Characteristic polynomials of pseudo-Anosov maps
暂无分享,去创建一个
[1] K. N. Dollman,et al. - 1 , 1743 .
[2] F. M. Saxelby. Experimental Mathematics , 1902, Nature.
[3] W. B. R. Lickorish,et al. A finite set of generators for the homeotopy group of a 2-manifold , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.
[4] E. Seneta. Non-negative matrices;: An introduction to theory and applications , 1973 .
[5] Eugene Seneta,et al. Non‐Negative Matrices , 1975 .
[6] Séminaire Orsay,et al. Travaux de Thurston sur les surfaces : Séminaire Orsay , 1979 .
[7] J. Harer,et al. Combinatorics of Train Tracks. , 1991 .
[8] B. M. Fulk. MATH , 1992 .
[9] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[10] Mladen Bestvina,et al. Train-tracks for surface homeomorphisms , 1995 .
[11] Peter Brinkmann. An Implementation of the Bestvina–Handel Algorithm for Surface Homeomorphisms , 2000, Exp. Math..
[12] John W. Eaton,et al. Gnu Octave Manual , 2002 .
[13] E. Kin,et al. A family of pseudo-Anosov braids with small dilatation , 2005, 0904.0594.
[14] J. Birman,et al. A new twist on Lorenz links , 2007, 0707.4331.
[15] J. Thiffeault,et al. On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus , 2009, 0905.1302.
[16] E. Hironaka. Small dilatation mapping classes coming from the simplest hyperbolic braid , 2009, 0909.4517.
[17] Benson Farb,et al. A Primer on Mapping Class Groups (Pms-49) , 2011 .