Top-down lower bounds for depth-three circuits

AbstractWe present a top-down lower bound method for depth-three ⋎, ⋏, ¬-circuits which is simpler than the previous methods and in some cases gives better lower bounds. In particular, we prove that depth-three ⋎, ⋏, ¬-circuits that compute parity (or majority) require size at least $$2^{0.618...\sqrt n } (or 2^{0.849...\sqrt n } $$ , respectively). This is the first simple proof of a strong lower bound by a top-down argument for non-monotone circuits.

[1]  P. Erdös,et al.  Intersection Theorems for Systems of Sets , 1960 .

[2]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[3]  N. S. Barnett,et al.  Private communication , 1969 .

[4]  Avi Wigderson,et al.  Monotone circuits for connectivity require super-logarithmic depth , 1990, STOC '88.

[5]  Ran Raz,et al.  Monotone circuits for matching require linear depth , 1990, STOC '90.

[6]  Mihalis Yannakakis,et al.  On monotone formulae with restricted depth , 1984, STOC '84.

[7]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[8]  A. Razborov Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .

[9]  Stasys Jukna,et al.  Printed Copies: Finite Limits and Lower Bounds for Circuits Size Finite Limits and Lower Bounds for Circuits Size , 2022 .

[10]  Avi Wigderson,et al.  Monotone Circuits for Connectivity Require Super-Logarithmic Depth , 1990, SIAM J. Discret. Math..

[11]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[12]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[13]  H. L. Abbott,et al.  Intersection Theorems for Systems of Sets , 1972, J. Comb. Theory, Ser. A.

[14]  Michael Sipser,et al.  A Topological View of Some Problems in Complexity Theory , 1984, MFCS.

[15]  Leslie G. Valiant,et al.  Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.

[16]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[17]  Allan Borodin,et al.  On lower bounds for read-k-times branching programs , 2005, computational complexity.

[18]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[19]  M. A. Epstein Lower Bounds for the Size of Circuits of Bounded Depth in Basis F^; G , 1986 .