Robust pole assignment in uncertain systems

The concept of 'pole colouring' is introduced as a graphical aid to the problem of observing the closed-loop system pole variations as a function of uncertainty. Some possible cost functions that can be used to measure the performance robustness of the resulting systems are also considered.

[1]  I. Postlethwaite,et al.  Robust Multivariable Control Using H∞ Methods: Analysis, Design and Industrial Applications , 1993 .

[2]  P. Young,et al.  An approach to the linear multivariable servomechanism problem. , 1972 .

[3]  Neil Munro,et al.  Further results on pole-shifting using output feedback , 1974 .

[4]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[5]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[6]  Andrew Bartlett,et al.  Robust Control: Systems with Uncertain Physical Parameters , 1993 .

[7]  P. Dorato,et al.  A historical review of robust control , 1987, IEEE Control Systems Magazine.

[8]  Werner Lange,et al.  Robust and Insensitive Design of Multivariable Feedback Systems: Multimodel Design , 1986 .

[9]  Rajnikant V. Patel,et al.  Multivariable System Theory and Design , 1981 .

[10]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[11]  W. Wonham On pole assignment in multi-input controllable linear systems , 1967 .

[12]  B. Ross Barmish,et al.  The robust root locus , 1990, Autom..

[13]  A. Olbrot,et al.  Introduction to the parametric approach to robust stability , 1989, IEEE Control Systems Magazine.

[14]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[15]  W. J. Duncan,et al.  On the Criteria for the Stability of Small Motions , 1929 .

[16]  Ulrich Derigs,et al.  The Sum Matching Problem , 1980 .