Bayesian geostatistical modelling with informative sampling locations.

We consider geostatistical models that allow the locations at which data are collected to be informative about the outcomes. A Bayesian approach is proposed, which models the locations using a log Gaussian Cox process, while modelling the outcomes conditionally on the locations as Gaussian with a Gaussian process spatial random effect and adjustment for the location intensity process. We prove posterior propriety under an improper prior on the parameter controlling the degree of informative sampling, demonstrating that the data are informative. In addition, we show that the density of the locations and mean function of the outcome process can be estimated consistently under mild assumptions. The methods show significant evidence of informative sampling when applied to ozone data over Eastern U.S.A.

[1]  L. Schwartz On Bayes procedures , 1965 .

[2]  J. Møller,et al.  Log Gaussian Cox Processes , 1998 .

[3]  D A Follmann,et al.  Use of Summary Measures to Adjust for Informative Missingness in Repeated Measures Data with Random Effects , 1999, Biometrics.

[4]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[5]  D. Higdon Space and Space-Time Modeling using Process Convolutions , 2002 .

[6]  Haotian Hang,et al.  Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[7]  M. Schervish,et al.  Posterior Consistency in Nonparametric Regression Problems under Gaussian Process Priors , 2004 .

[8]  S. Ratcliffe,et al.  Joint Modeling of Longitudinal and Survival Data via a Common Frailty , 2004, Biometrics.

[9]  Herbert K. H. Lee,et al.  Efficient models for correlated data via convolutions of intrinsic processes , 2005 .

[10]  Taeryon Choi,et al.  Alternative posterior consistency results in nonparametric binary regression using Gaussian process priors , 2007 .

[11]  M. Schervish,et al.  On posterior consistency in nonparametric regression problems , 2007 .

[12]  L. P. Ho,et al.  Modelling marked point patterns by intensity-marked cox processes , 2008 .

[13]  Dimitrios Rizopoulos,et al.  Joint modelling of longitudinal and survival data. , 2008 .

[14]  Van Der Vaart,et al.  Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwidth , 2009, 0908.3556.

[15]  P. Diggle,et al.  Geostatistical inference under preferential sampling , 2010 .

[16]  P. Diggle,et al.  A Class of Convolution‐Based Models for Spatio‐Temporal Processes with Non‐Separable Covariance Structure , 2010 .

[17]  M. Fuentes,et al.  Journal of the American Statistical Association Bayesian Spatial Quantile Regression Bayesian Spatial Quantile Regression , 2022 .