Spin Wave Magnetic NanoFabric: A New Approach to Spin-Based Logic Circuitry

We describe a magnetic nanofabric, which may provide a route to building reconfigurable spin-based logic circuits compatible with conventional electron-based devices. A distinctive feature of magnetic nanofabric is that a bit of information is encoded into the phase of the spin wave signal. This makes it possible to transmit information without the use of electric current and to utilize wave interference for useful logic functionality. The basic elements include voltage-to-spin-wave and wave-to-voltage converters, spin waveguides, a spin wave modulator, and a magnetoelectric cell. We illustrate the performance of the basic elements by experimental data and the results of numerical modeling. The combination of the basic elements leads us to construct magnetic circuits for NOT and majority logic gates. Logic gates such as AND, OR, NAND, and NOR are shown as the combination of NOT and reconfigurable majority gates. Examples of computational architectures such as a multibit processor and a cellular nonlinear network are described. The main advantage of the proposed magnetic nanofabric is its ability to realize logic gates with fewer devices than in CMOS-based circuits. Potentially, the area of the elementary reconfigurable majority gate can be scaled down to 0.1 mum2. We also discuss the disadvantages and limitations of the magnetic nanofabric.

[1]  Tamás Roska,et al.  AnaLogic Wave Computers-wave-type algorithms: canonical description, computer classes, and computational complexity , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[2]  Angelo Raffaele Meo,et al.  Majority Gate Networks , 1966, IEEE Trans. Electron. Comput..

[3]  J. Daughton Magnetoresistive memory technology , 1992 .

[4]  Michael J. Wilson,et al.  Nanowire-based sublithographic programmable logic arrays , 2004, FPGA '04.

[5]  M. Kostylev,et al.  Spin-wave logical gates , 2005 .

[6]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[7]  G. J. Parker,et al.  Time-resolved measurement of propagating spin waves in ferromagnetic thin films. , 2002, Physical review letters.

[8]  Seth Copen Goldstein,et al.  NanoFabrics: spatial computing using molecular electronics , 2001, ISCA 2001.

[9]  K. Loe,et al.  Analysis of flux input and output Josephson pair device , 1985 .

[10]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[11]  Kang L. Wang,et al.  Nano Logic Circuits with Spin Wave Bus , 2006, Third International Conference on Information Technology: New Generations (ITNG'06).

[12]  Supriyo Bandyopadhyay,et al.  Granular nanoelectronics , 1996 .

[13]  K.L. Wang,et al.  Efficiency of Spin-Wave Bus for Information Transmission , 2007, IEEE Transactions on Electron Devices.

[14]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[15]  D. R. Terrell,et al.  An in situ grown eutectic magnetoelectric composite material , 1974 .

[16]  Kang L. Wang,et al.  Feasibility study of logic circuits with a spin wave bus , 2007, Nanotechnology.

[17]  D. Nikonov,et al.  Spin gain transistor in ferromagnetic semiconductors-the semiconductor Bloch-equations approach , 2003, IEEE Transactions on Nanotechnology.

[18]  A. Khitun,et al.  Cellular nonlinear network based on semiconductor tunneling nanostructure , 2005, IEEE Transactions on Electron Devices.

[19]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[20]  A. Khitun,et al.  Inductively Coupled Circuits with Spin Wave Bus for Information Processing , 2007 .

[21]  Gopalan Srinivasan,et al.  Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides , 2001 .

[22]  James A. Bain,et al.  The effect of stress-induced anisotropy in patterned FeCo thin-film structures , 2006 .

[23]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[24]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[25]  Kang L. Wang,et al.  Nano-scale computational architectures with spin wave bus , 2005 .

[26]  A. Khitun,et al.  A nano-scale architecture for constant time image processing , 2007 .

[27]  G. Herranz,et al.  Integration of Multiferroic BiFeO $_3$ Thin Films into Heterostructures for Spintronics , 2008, IEEE Transactions on Magnetics.

[28]  Chein-Wei Jen,et al.  A novel design of binary majority gate and its application to median filtering , 1990, IEEE International Symposium on Circuits and Systems.

[29]  Tetsuya Asai,et al.  A majority-logic device using an irreversible single-electron box , 2003 .

[30]  A. Khitun,et al.  Interconnects for nanoelectronics , 2005, Proceedings of the IEEE 2005 International Interconnect Technology Conference, 2005..

[31]  M. Durlam,et al.  Nonvolatile RAM based on magnetic tunnel junction elements , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[32]  Hyungsoon Shin,et al.  The 3-Bit Gray Counter Based on Magnetic-Tunnel-Junction Elements , 2007, IEEE Transactions on Magnetics.

[33]  M. Kostylev,et al.  Realization of spin-wave logic gates , 2007, 0711.4720.

[34]  M. R. Freeman,et al.  Direct Observation of Magnetic Relaxation in a Small Permalloy Disk by Time-Resolved Scanning Kerr Microscopy , 1997 .

[35]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[36]  R Ramesh,et al.  Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.

[37]  Sung-Chul Shin,et al.  Voltage control of magnetization easy-axes: a potential candidate for spin switching in future ultrahigh-density nonvolatile magnetic random access memory , 2004 .

[38]  Claude Fermon,et al.  Spin waves propagation and confinement in conducting films at the micrometer scale , 2001 .

[39]  Sang-Koog Kim,et al.  Voltage control of magnetization easy-axes: a potential candidate for spin switching in future ultrahigh-density nonvolatile magnetic random access memory , 2004, IEEE Transactions on Magnetics.

[40]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[41]  T. M. Crawford,et al.  Inductive measurement of ultrafast magnetization dynamics in thin-film Permalloy , 1999 .

[42]  Mary Mehrnoosh Eshaghian-Wilner,et al.  A nano-scale reconfigurable mesh with spin waves , 2006, CF '06.

[43]  A. A. Semenov,et al.  Ferrite-ferroelectric layered structures for electrically and magnetically tunable microwave resonators , 2006 .

[44]  Gustavo de Veciana,et al.  Defect tolerant probabilistic design paradigm for nanotechnologies , 2004, Proceedings. 41st Design Automation Conference, 2004..

[45]  G. A. Smolenskii,et al.  REVIEWS OF TOPICAL PROBLEMS: Ferroelectromagnets , 1982 .

[46]  A. V. Carazo,et al.  Magnetoelectric Properties in Piezoelectric and Magnetostrictive Laminate Composites , 2001 .