The approximation property and Lipschitz mappings on Banach spaces
暂无分享,去创建一个
[1] E. A. Sánchez-Pérez,et al. Lipschitz operator ideals and the approximation property , 2016 .
[2] A. Dalet. Free Spaces Over Some Proper Metric Spaces , 2014, 1404.3939.
[3] S. Lassalle,et al. The Banach ideal of A-compact operators and related approximation properties , 2013 .
[4] A. Dalet. Free spaces over countable compact metric spaces , 2013, 1307.0735.
[5] S. Lassalle,et al. Operators ideals and approximation properties , 2012, 1211.7366.
[6] E. Oja. A remark on the approximation of p-compact operators by finite-rank operators , 2012 .
[7] G. Godefroy,et al. Free Banach spaces and the approximation properties , 2012, 1201.0847.
[8] Ju Myung Kim,et al. The dual space of (L(X,Y),τp) and the p-approximation property , 2010 .
[9] W. Johnson,et al. Lipschitz $p$-summing operators , 2009 .
[10] J. M. Delgado,et al. The p-approximation property in terms of density of finite rank operators , 2009 .
[11] G. Botelho,et al. IDEAL TOPOLOGIES AND CORRESPONDING APPROXIMATION PROPERTIES , 2016 .
[12] G. Botelho,et al. Approximation properties determined by operator ideals and approximability of homogeneous polynomials and holomorphic functions , 2012 .
[13] Ells,et al. ON EMBEDDING UNIFORM AND TOPOLOGICAL SPACES , 2012 .
[14] D. Bump. Compact Operators , 2011 .
[15] Liu De-long. The dual space of l_■(0 , 2007 .
[16] B. Carl,et al. On A‐Compact Operators, Generalized Entropy Numbers and Entropy Ideals , 1984 .
[17] O. Reinov. Approximation properties of order p and the existence of non-p-nuclear operators with p-nuclear second adjoints , 1982 .