Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage.

Some treatments for full thickness defects of articular cartilage, such as cultured chondrocyte transplantation, have already been done. However, to overcome osteoarthritis, we must further study the partial thickness defect of articular cartilage. It is much more difficult to repair a partial thickness defect because few repairing cells can address such injured sites. We herein show that bioengineered layered chondrocyte sheets using temperature-responsive culture dishes may be a potentially useful treatment for partial thickness defects. We evaluated the property of these sheets using real-time PCR and histological findings, and allografted these sheets to evaluate the effect of treatment using a rabbit partial model. In conclusion, layered chondrocyte sheets were able to maintain the cartilageous phenotype, and could be attached to the sites of cartilage damage which acted as a barrier to prevent a loss of proteoglycan from these sites and to protect them from catabolic factors in the joint.

[1]  H. Ling,et al.  The chitinase 3-like protein human cartilage glycoprotein 39 inhibits cellular responses to the inflammatory cytokines interleukin-1 and tumour necrosis factor-alpha. , 2004, The Biochemical journal.

[2]  T. Yamamuro,et al.  Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. , 1993, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[3]  Masayuki Yamato,et al.  Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface , 2004, Transplantation.

[4]  T. Okano,et al.  Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. , 2004, The New England journal of medicine.

[5]  M. Ishihara,et al.  An atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS-scaffold) for the culture of annulus fibrosus cells from an intervertebral disc. , 2003, Journal of biomedical materials research. Part A.

[6]  T. Okano,et al.  Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface. , 2000, Biomacromolecules.

[7]  S W O'Driscoll,et al.  The Repair of Major Osteochondral Defects in Joint Surfaces by Neochondrogenesis with Autogenous Osteoperiosteal Grafts Stimulated by Continuous Passive Motion: An Experimental Investigation in the Rabbit , 1986, Clinical orthopaedics and related research.

[8]  H. Weinans,et al.  Glucosamine decreases expression of anabolic and catabolic genes in human osteoarthritic cartilage explants. , 2006, Osteoarthritis and cartilage.

[9]  E. Hunziker,et al.  Repair of Partial-Thickness Defects in Articular Cartilage: Cell Recruitment from the Synovial Membrane* , 1996, The Journal of bone and joint surgery. American volume.

[10]  T. Okano,et al.  A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). , 1993, Journal of biomedical materials research.

[11]  Mitsuo Umezu,et al.  Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. , 2002, Journal of biomedical materials research.

[12]  Andreas Fehrenbacher,et al.  Rapid regulation of collagen but not metalloproteinase 1, 3, 13, 14 and tissue inhibitor of metalloproteinase 1, 2, 3 expression in response to mechanical loading of cartilage explants in vitro. , 2003, Archives of biochemistry and biophysics.

[13]  R. Mason,et al.  Metalloproteinase and tissue inhibitor of metalloproteinase expression in the murine STR/ort model of osteoarthritis. , 2002, Osteoarthritis and cartilage.

[14]  Masayuki Yamato,et al.  Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. , 2002, Journal of biomedical materials research.

[15]  T. Okano,et al.  Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. , 2001, Tissue engineering.

[16]  C. Ohlsson,et al.  Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. , 1994, The New England journal of medicine.

[17]  M. Saito,et al.  Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. , 2002, Osteoarthritis and cartilage.

[18]  K. Kawasaki,et al.  Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. , 2002, The Journal of bone and joint surgery. British volume.

[19]  M. Tortorella,et al.  Inhibition of ADAM-TS4 and ADAM-TS5 Prevents Aggrecan Degradation in Osteoarthritic Cartilage* , 2002, The Journal of Biological Chemistry.

[20]  T. Aigner,et al.  TAK1 downregulation reduces IL-1beta induced expression of MMP13, MMP1 and TNF-alpha. , 2006, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[21]  Mitsuo Umezu,et al.  Fabrication of Pulsatile Cardiac Tissue Grafts Using a Novel 3-Dimensional Cell Sheet Manipulation Technique and Temperature-Responsive Cell Culture Surfaces , 2002, Circulation research.

[22]  J. Mollenhauer,et al.  Collagen degradation products modulate matrix metalloproteinase expression in cultured articular chondrocytes. , 2006, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[23]  Masayuki Yamato,et al.  Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. , 2006, Biochemical and biophysical research communications.

[24]  T. Okano,et al.  Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. , 1995, Biomaterials.

[25]  T. Okano,et al.  Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated Madin-Darby canine kidney (MDCK) cell sheets. , 2000, Journal of biomedical materials research.

[26]  T. Okano,et al.  Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. , 2001, Tissue engineering.

[27]  J. Mcgregor,et al.  Effects of supravital fluorochromes used to analyze the in vivo homing of murine lymphocytes on cellular function. , 1991, Journal of immunological methods.