Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines

A migrating bird’s response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival.

[1]  Henrik Mouritsen,et al.  Spatiotemporal Orientation Strategies of Long-Distance Migrants , 2003 .

[2]  Russell Greenberg,et al.  Birds of two worlds : the ecology and evolution of migration , 2005 .

[3]  Thomas Alerstam,et al.  Optimal bird migration revisited , 2011, Journal of Ornithology.

[4]  Vsevolod Afanasyev,et al.  Tracking Long-Distance Songbird Migration by Using Geolocators , 2009, Science.

[5]  Willem Bouten,et al.  Quantifying flow-assistance and implications for movement research. , 2012, Journal of theoretical biology.

[6]  H. Mouritsen,et al.  Modelling migration: the clock-and-compass model can explain the distribution of ringing recoveries , 1998, Animal Behaviour.

[7]  Hans Georg Wallraff,et al.  Avian Navigation , 1982, Proceedings in Life Sciences.

[8]  P. Kerlinger,et al.  Wind drift, compensation, and the use of landmarks by nocturnal bird migrants , 1982, Animal Behaviour.

[9]  Philip D. Taylor,et al.  Nonbreeding-Season Drivers of Population Dynamics in Seasonal Migrants: Conservation Parallels Across Taxa Facteurs hors reproduction intervenant sur la dynamique des populations de migrateurs saisonniers : analogie entre divers taxons , 2009 .

[10]  T. Alerstam,et al.  Do birds use waves for orientation when migrating across the sea? , 1976, Nature.

[11]  Thomas Alerstam,et al.  Orientation scatter of free-flying nocturnal passerine migrants: components and causes , 2003, Animal Behaviour.

[12]  Felix Liechti Nächtlicher Vogelzug im Herbst über Süddeutschland: Winddrift und Kompensation , 1993, Journal für Ornithologie.

[13]  P. Busse,et al.  Autumn Migration Dynamics, Body Mass, Fat Load and Stopover Behaviour of the Willow Warbler (Phylloscopus trochilus) at Manyas KuşcennetI National Park (NW Turkey) , 2007 .

[14]  A. Hedenström,et al.  Optimum fuel loads in migratory birds: distinguishing between time and energy minimization , 1997, Journal of theoretical biology.

[15]  P. Marra,et al.  The Importance of Understanding Migratory Connectivity and Seasonal Interactions , 2005 .

[16]  H. Biebach,et al.  Interaction of bodymass, fat, foraging and stopover period in trans-Sahara migrating passerine birds , 1986, Oecologia.

[17]  Kasper Thorup,et al.  The orientation system and migration pattern of long-distance migrants: conflict between model predictions and observed patterns , 2001 .

[18]  Thomas A. Jones MATLAB functions to analyze directional (azimuthal) data - III: q-Sample inference , 2010, Comput. Geosci..

[19]  Philip D. Taylor,et al.  Migratory orientation of juvenile yellow-rumped warblers (Dendroica coronata) following stopover: sources of variation and the importance of geographic origins , 2008, Behavioral Ecology and Sociobiology.

[20]  Franz Bairlein,et al.  The importance of landscape context for songbirds on migration: body mass gain is related to habitat cover , 2008, Landscape Ecology.

[21]  W. Cochran,et al.  Migrating Songbirds Recalibrate Their Magnetic Compass Daily from Twilight Cues , 2004, Science.

[22]  V. Alistair Drake,et al.  Animal Orientation Strategies for Movement in Flows , 2011, Current Biology.

[23]  Thomas Alerstam,et al.  The problem of estimating wind drift in migrating birds. , 2002, Journal of theoretical biology.

[24]  S. Åkesson,et al.  Magnetic compass of migratory Savannah sparrows is calibrated by skylight polarization at sunrise and sunset , 2007, Journal of Ornithology.

[25]  I. Newton The Migration Ecology of Birds , 2007 .

[26]  A. Perdeck,et al.  Two Types of Orientation in Migrating Starlings, Sturnus yulgaris L., and Chaffinches, Fringilla coelebs L., as Revealed by Displacement Experiments , 1958 .

[27]  K. Thorup,et al.  Testing the role of sensory systems in the migratory heading of a songbird , 2009, Journal of Experimental Biology.

[28]  Jeffrey J. Buler,et al.  A multi-scale examination of stopover habitat use by birds. , 2007, Ecology.

[29]  Bruno Bruderer,et al.  The role of wind in passerine autumn migration between Europe and Africa , 2005 .

[30]  Jeremy M. V. Rayner,et al.  Mathematical modelling of the avian flight power curve , 2001 .

[31]  Bruno Bruderer,et al.  Flight characteristics of birds:: I. radar measurements of speeds , 2001 .

[32]  T. Alerstam Analysis and a Theory of Visible Bird Migration , 1978 .

[33]  I. Newton,et al.  Population Limitation in Birds , 1998 .

[34]  G. Hilgerloh Orientation of Trans-Saharan passerine migrants in Southwestern Spain , 1989 .

[35]  B. Heller Circular Statistics in Biology, Edward Batschelet. Academic Press, London & New York (1981), 371, Price $69.50 , 1983 .

[36]  F. Liechti,et al.  Nocturnal bird migration in Mauritania — first records , 2003, Journal für Ornithologie.

[37]  F. Bairlein,et al.  Fuel stores, fuel accumulation, and the decision to depart from a migration stopover site , 2008 .

[38]  Bruno Bruderer,et al.  Wind and rain govern the intensity of nocturnal bird migration in central Europe: A log-linear regression analysis , 2002 .

[39]  C. J. Pennycuick,et al.  Modelling the Flying Bird , 2008 .

[40]  H. Ellegren Stopover ecology of autumn migrating Bluethroats Luscinia s. svecica in relation to age and sex , 1991 .

[41]  Philip K. Stoddard,et al.  Computer simulation of autumnal bird migration over the western North Atlantic , 1983, Animal Behaviour.

[42]  H. Schmaljohann,et al.  Trans-Sahara migrants select flight altitudes to minimize energy costs rather than water loss , 2009, Behavioral Ecology and Sociobiology.

[43]  Felix Liechti,et al.  Departure of migrating European robins, Erithacus rubecula, from a stopover site in relation to wind and rain , 2004, Animal Behaviour.

[44]  T. Alerstam,et al.  How hazardous is the Sahara Desert crossing for migratory birds? Indications from satellite tracking of raptors , 2010, Biology Letters.

[45]  F. Bairlein,et al.  Different wintering strategies of two Palearctic migrants in West Africa – a consequence of foraging strategies? , 2002 .

[46]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[47]  Roine Strandberg,et al.  Geographical and temporal flexibility in the response to crosswinds by migrating raptors , 2011, Proceedings of the Royal Society B: Biological Sciences.

[48]  Bruno Bruderer,et al.  Flight behaviour of nocturnally migrating birds in coastal areas - crossing or coasting , 1998 .

[49]  C. Perrins,et al.  Birds of the Western Palearctic , 1978, Nature.

[50]  Felix Liechti,et al.  Birds: blowin’ by the wind? , 2006, Journal of Ornithology.

[51]  A. Hedenström,et al.  Optimal stopover decisions under wind influence: the effects of correlated winds. , 2000, Journal of theoretical biology.

[52]  W. Richardson,et al.  Wind and orientation of migrating birds: A review , 1990, Experientia.

[53]  A. Hedenström,et al.  Migration routes and wintering areas of Willow Warblers Phylloscopus trochilus ( L . ) ringed in Fennoscandia , 2009 .

[54]  Thomas Alerstam,et al.  OPTIMAL MAP PROJECTIONS FOR ANALYSING LONG-DISTANCE MIGRATION ROUTES , 1998 .

[55]  Martin Wikelski,et al.  Juvenile Songbirds Compensate for Displacement to Oceanic Islands during Autumn Migration , 2011, PloS one.

[56]  Silke Bauer,et al.  The natural link between Europe and Africa – 2.1 billion birds on migration , 2009 .

[57]  E. V. van Loon,et al.  Integrating Meteorology into Research on Migration , 2010, Integrative and comparative biology.

[58]  D. Kishkinev,et al.  Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study , 2011, Journal of Experimental Biology.

[59]  G. Zink Der Zug europäischer Singvögel. Ein Atlas der Wiederfunde beringter Vögel. 1. Lieferung (30 Arten) , 1973 .

[60]  Thomas A. Jones,et al.  MATLAB functions to analyze directional (azimuthal) data - I: Single-sample inference , 2006, Comput. Geosci..

[61]  Willem Bouten,et al.  Can wind help explain seasonal differences in avian migration speed , 2010 .

[62]  Melissa S. Bowlin,et al.  Evidence for a navigational map stretching across the continental U.S. in a migratory songbird , 2007, Proceedings of the National Academy of Sciences.

[63]  Willem Bouten,et al.  An operational model predicting autumn bird migration intensities for flight safety , 2007 .

[64]  Ian Newton,et al.  Can conditions experienced during migration limit the population levels of birds? , 2006, Journal of Ornithology.

[65]  N. Chernetsov Habitat selection by nocturnal passerine migrants en route: mechanisms and results , 2006, Journal of Ornithology.

[66]  A. Hedenström,et al.  Body frontal area in passerine birds , 2003 .

[67]  Bruno Bruderer,et al.  Nocturnal autumn bird migration at Falsterbo, South Sweden , 2001 .

[68]  Wind and Orientation of Migrating Birds: A Review , 1991 .

[69]  K. Thorup,et al.  Estimating variation among individuals in migration direction , 2007 .

[70]  R. Moreau. The Palaearctic-African bird migration systems , 1972 .

[71]  Felix Liechti,et al.  Modelling Optimal Heading and Airspeed of Migrating Birds in Relation to Energy Expenditure and Wind Influence , 1995 .

[72]  R. Muheim,et al.  White-throated sparrows calibrate their magnetic compass by polarized light cues during both autumn and spring migration , 2009, Journal of Experimental Biology.

[73]  Vsevolod Afanasyev,et al.  Year-Round Tracking of Small Trans-Saharan Migrants Using Light-Level Geolocators , 2010, PloS one.

[74]  T. Fransson,et al.  Information from the geomagnetic field triggers a reduced adrenocortical response in a migratory bird , 2009, Journal of Experimental Biology.

[75]  Å. Lindström,et al.  Maximum energy intake rate is proportional to basal metabolic rate in passerine birds , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[76]  T. Alerstam,et al.  Exaggerated orientation scatter of nocturnal passerine migrants close to breeding grounds: comparisons between seasons and latitudes , 2010, Behavioral Ecology and Sociobiology.

[77]  Willem Bouten,et al.  Avian Information Systems: Developing Web-Based Bird Avoidance Models , 2008 .

[78]  P. Berthold,et al.  Recent Advances in Studies of Bird Migration , 1991 .

[79]  T. Alerstam,et al.  Optimal use of wind by migrating birds: combined drift and overcompensation. , 1979, Journal of theoretical biology.

[80]  G. Zink Der Zug europäischer Singvögel. Ein Atlas der Wiederfunde beringter Vögel. 2. Lieferung , 1975 .

[81]  Thomas Alerstam,et al.  Flight Speeds among Bird Species: Allometric and Phylogenetic Effects , 2007, PLoS biology.

[82]  S. Åkesson Avian Long-Distance Navigation: Experiments with Migratory Birds , 2003 .

[83]  A. Hedenström,et al.  STOPOVER DECISIONS UNDER WIND INFLUENCE , 1998 .

[84]  R. Reilly,et al.  Bet-hedging and the orientation of juvenile passerines in fall migration. , 2009, The Journal of animal ecology.

[85]  T. Fransson,et al.  When and where to fuel before crossing the Sahara desert – extended stopover and migratory fuelling in first‐year garden warblers Sylvia borin , 2008 .

[86]  Bruno Bruderer,et al.  How does a first year passerine migrant find its way? Simulating migration mechanisms and behavioural adaptations , 2003 .

[87]  Sidney A. Gauthreaux,et al.  The Flight Behavior of Migrating Birds in Changing Wind Fields: Radar and Visual Analyses , 1991 .

[88]  D. Ellerby,et al.  The mechanical power requirements of avian flight , 2007, Biology Letters.

[89]  Willem Bouten,et al.  Pareto front analysis of flight time and energy use in long-distance bird migration , 2007 .

[90]  T. C. Williams,et al.  The Orientation of Transoceanic Migrants , 1990 .

[91]  Thomas Alerstam,et al.  Wind as Selective Agent in Bird Migration , 1979 .

[92]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[93]  Thomas Alerstam,et al.  Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds , 2011, Proceedings of the Royal Society B: Biological Sciences.

[94]  I. Couzin,et al.  Social interactions, information use, and the evolution of collective migration , 2010, Proceedings of the National Academy of Sciences.

[95]  Willem Bouten,et al.  Analyzing the effect of wind on flight: pitfalls and solutions , 2007, Journal of Experimental Biology.