Lifetimes and structures of low-lying negative-parity states of Po209

[1]  E. Strub,et al.  γ-γ fast timing at X-ray energies and investigation on various timing deviations , 2020 .

[2]  J. Allmond,et al.  Early Signal of Emerging Nuclear Collectivity in Neutron-Rich ^{129}Sb. , 2019, Physical review letters.

[3]  M. Ley,et al.  Lifetimes of the 41+ states of Po206 and Po204 : A study of the transition from noncollective seniority-like mode to collectivity , 2019 .

[4]  P. Van Isacker,et al.  Lifetimes in At211 and their implications for the nuclear structure above Pb208 , 2019, Physical Review C.

[5]  Yutaka Utsuno,et al.  Thick-restart block Lanczos method for large-scale shell-model calculations , 2019, Comput. Phys. Commun..

[6]  P. Petkov,et al.  A revised B(E2;2+1$ \rightarrow$→ 0+1) value in the semi-magic nucleus 210Po , 2017, 1706.04495.

[7]  Pragati,et al.  Decay of the N=126, Fr 213 nucleus , 2016 .

[8]  S. Stegemann,et al.  Reduced γ–γ time walk to below 50 ps using the multiplexed-start and multiplexed-stop fast-timing technique with LaBr3(Ce) detectors , 2016 .

[9]  N. Yoshinaga,et al.  Large-scale shell-model calculations of nuclei around mass 210 , 2016 .

[10]  F. Kondev,et al.  Nuclear Data Sheets for A = 209 , 2015 .

[11]  U. Koester,et al.  The generalized centroid difference method for picosecond sensitive determination of lifetimes of nuclear excited states using large fast-timing arrays , 2013 .

[12]  G. Pascovici,et al.  The time-walk of analog constant fraction discriminators using very fast scintillator detectors with linear and non-linear energy response , 2012 .

[13]  T. Kuo,et al.  Effective shell-model hamiltonians from realistic nucleon-nucleon potentials within a perturbative approach , 2012, 1205.0383.

[14]  F. Kondev,et al.  Nuclear Data Sheets for A = 207☆ , 2011 .

[15]  G. Pascovici,et al.  The mirror symmetric centroid difference method for picosecond lifetime measurements via γ―γ coincidences using very fast LaBr3(Ce) scintillator detectors , 2010 .

[16]  A. Arima,et al.  Low-lying states of heavy nuclei within the nucleon pair approximation , 2009 .

[17]  G. Nicolescu,et al.  Electric quadrupole moments of 17/2- and 13/2- subsequent isomers in Po-209 , 2009 .

[18]  T. Kuo,et al.  Shell-model calculations and realistic effective interactions , 2008, 0809.2144.

[19]  P. Menge,et al.  Lanthanum halide scintillators: Properties and applications , 2006 .

[20]  L. Coraggio,et al.  Proton-neutron interaction near closed shells , 2003, nucl-th/0310090.

[21]  H. Grawe,et al.  Large scale shell model calculations for the N=126 isotones Po Pu , 2003 .

[22]  S. Bogner,et al.  Low momentum nucleon–nucleon potentials with half-on-shell T-matrix equivalence , 2001, nucl-th/0204058.

[23]  R. Machleidt The High precision, charge dependent Bonn nucleon-nucleon potential (CD-Bonn) , 2000, nucl-th/0006014.

[24]  T. Kuo,et al.  Bonn potential and shell model calculations for N=126 isotones , 1999, nucl-th/9907023.

[25]  G. Dracoulis,et al.  High-spin isomers in 211Po and related structures in 210Po and 212Po , 1998 .

[26]  T. Kuo,et al.  Bonn potential and shell-model calculations for {sup 206,205,204}Pb , 1998, nucl-th/9807079.

[27]  Brown,et al.  Appraisal of the Kuo-Herling shell-model interaction and application to A=210-212 nuclei. , 1991, Physical review. C, Nuclear physics.

[28]  R. Liotta,et al.  Structure of proton-deficient nuclei near 208Pb , 1990 .

[29]  A. P. Kabachenko,et al.  Nuclear orientation study of the decay of208At (T1/2=1.63 h) and209At (T1/2=5.41 h) implanted in iron host , 1987 .

[30]  P. Glaudemans,et al.  On the structure of N=126 isotones , 1985 .

[31]  R. Casten A simple approach to nuclear transition regions , 1985 .

[32]  A. Zemel,et al.  LOW-SPIN STATES IN EVEN PO AND RN ISOTOPES AND THE INTERPLAY BETWEEN COLLECTIVE AND QUASIPARTICLE CONFIGURATIONS , 1983 .

[33]  J. Boisson,et al.  Shell model calculations in the lead region: Hg-205, Tl-205, Po-211, and Bi-211 , 1981 .

[34]  A. McDonald,et al.  Magnetic moments and half-lives of isomeric states in polonium isotopes , 1976 .

[35]  T. Kuo,et al.  Shell model calculations of two to four identical-“particle” systems near 208Pb , 1975 .

[36]  S. Prussin,et al.  DECAY OF 209At TO LEVELS IN 209Po , 1974 .

[37]  Chin W. Ma,et al.  Shell model in the lead region , 1973 .

[38]  M. Alpsten,et al.  PROPERTIES OF $sup 209$Po AS OBSERVED IN THE DECAY OF $sup 209$At. , 1971 .

[39]  N. Freed,et al.  Semi-realistic shell model studies in the lead region I. 211Pb, 209Tl, 209Po , 1971 .

[40]  T. Yamazaki,et al.  g-FACTOR MEASUREMENT OF A THREE-PARTICLE ISOMERIC STATE OF $sup 209$Po FOLLOWING PULSED GENERATION IN ($alpha$,xn) REACTIONS. , 1968 .

[41]  Hans E. Suess,et al.  On the "Magic Numbers" in Nuclear Structure , 1949 .

[42]  M. G. Mayer On Closed Shells in Nuclei. II , 1948 .