Spontaneous organization of columnar nanoparticles in Fe-BN nanocomposite films

Ion-beam sputtering codeposition assisted with either reactive (nitrogen) or inert gas (neon, argon, and krypton) has been used to fabricate Fe-BN nanocomposite thin films of Fe-rich nanoparticles encapsulated in nanocrystalline boron nitride. A combination of high-resolution and conventional transmission electron microscopy (TEM), grazing incidence small-angle x-ray scattering (GISAXS), electron diffraction, x-ray absorption, and Moessbauer spectroscopy has been used to investigate the structural characteristics of these films, both at nanometric and atomic scales. Crystallized {epsilon}-Fe{sub 3}N nanoparticles (typically 2.5 nm in size) have been obtained in N assisted films, whereas self-organized arrays of amorphous Fe{sub 2}B nanocolumns ({approx}3 nm in diameter and {approx}10 nm in height, with small size dispersion) have been synthesized in inert-gas assisted films. Quantitative analysis of the GISAXS patterns and of the local autocorrelation functions of the TEM images indicate a better spatial ordering in the 50 eV Ar assisted films, i.e., when backscattering and sputtering effects are minimized. Our results shows that low-energy assistance with light ions can be used to control the morphology as well as the spatial ordering and chemical composition of nanoparticles in insulating matrix.

[1]  G. Tourillon,et al.  Electron yield X-ray absorption spectroscopy at atmospheric pressure , 1987 .

[2]  Masato Tomita,et al.  Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon , 1996, Nature.

[3]  C. Chien,et al.  Radio frequency reactive sputtered iron nitrides using ammonia gas: Structure and magnetic properties , 1994 .

[4]  A. K. Sharma,et al.  High coercivity and superparamagnetic behavior of nanocrystalline iron particles in alumina matrix , 2001 .

[5]  Jan Skov Pedersen,et al.  Determination of size distribution from small‐angle scattering data for systems with effective hard‐sphere interactions , 1994 .

[6]  P. Oelhafen,et al.  Morphology and size distribution of gold nanoclusters ina−C:Hfilms studied by grazing incidence small-angle x-ray scattering , 2001 .

[7]  F. Petroff,et al.  Structural and magnetic properties of Fex–C1−x nanocomposite thin films , 2000 .

[8]  Y. Makino,et al.  Magnetic and electrical properties of Fe‐B‐N amorphous films (invited) , 1985 .

[9]  E. Stern,et al.  Analysis of multiple-scattering XAFS data using theoretical standards , 1995 .

[10]  Guo,et al.  Extended x-ray-absorption fine structure: Direct comparison of absorption and electron yield. , 1985, Physical review. B, Condensed matter.

[11]  K. Suganuma,et al.  Formation of gold and iron oxide nanoparticles encapsulated in boron nitride sheets , 1999 .

[12]  G. Hadjipanayis,et al.  INTRINSIC AND HYSTERESIS PROPERTIES OF FEPT NANOPARTICLES , 2003 .

[13]  R. Sherwood,et al.  Magnetic properties of amorphousFexB100−x(72<~x<~86)and crystallineFe3B , 1979 .

[14]  G. Hadjipanayis,et al.  Mössbauer studies and correlation of coercivity with particle morphology in and granular solids , 1995 .

[15]  J. Eymery,et al.  A gas flow backscatterer counter for CEMS studies in the 300–600 K range , 1986 .

[16]  Triolo,et al.  Analysis of small-angle scattering patterns from precipitating alloys. , 1989, Physical review. B, Condensed matter.

[17]  G. M. Chen,et al.  Moessbauer and magnetic studies of epsilon-Fe/sub x/N, 2 , 1983 .

[18]  S. Schroeder Towards a 'universal curve' for total electron-yield XAS , 1996 .

[19]  Jaouen,et al.  Sampling depth in conversion-electron detection used for x-ray absorption. , 1992, Physical review. B, Condensed matter.

[20]  Ignaz Eisele,et al.  Grazing incidence small angle x-ray scattering from free-standing nanostructures , 1999 .

[21]  P. Stadelmann,et al.  Order and Disorder in Boron Phases , 1996 .

[22]  J. Rehr,et al.  Near-edge x-ray-absorption fine structure of Pb: A comparison of theory and experiment. , 1993, Physical review. B, Condensed matter.

[23]  A. Ankudinov,et al.  REAL-SPACE MULTIPLE-SCATTERING CALCULATION AND INTERPRETATION OF X-RAY-ABSORPTION NEAR-EDGE STRUCTURE , 1998 .

[24]  G. Hadjipanayis,et al.  CoPt and FePt Thin Films for High Density Recording Media , 2000 .

[25]  John M. Cowley,et al.  Auto-correlation analysis of high resolution electron micrographs of near-amorphous thin films , 1985 .

[26]  Francesco Gonella,et al.  GISAXS study of Cu-Ni alloy clusters obtained by double ion implantation in silicate glasses , 2000 .

[27]  C. Chien,et al.  Granular metal films as recording media , 1988 .

[28]  Exner,et al.  Local geometry of Fe3+ ions on the potassium sites in KTaO3. , 1993, Physical review. B, Condensed matter.

[29]  J. Rehr,et al.  Theory of solid-state contributions to the x-ray elastic scattering amplitude , 2000 .

[30]  Chien,et al.  Nonuniqueness of the state of amorphous pure iron. , 1987, Physical review. B, Condensed matter.

[31]  A. Petford-Long,et al.  Magnetic behavior of Fe:Al2O3 nanocomposite films produced by pulsed laser deposition , 2001 .

[32]  Neil W. Ashcroft,et al.  Structure and Resistivity of Liquid Metals , 1966 .

[33]  G. Hadjipanayis,et al.  Mössbauer studies in Fe(SiO2,BN) granular solids , 1995 .

[34]  F. Petroff,et al.  Nanostructure and magnetic properties of BN-encapsulated Fe(B) and Fe2N nanoparticles prepared by dual ion-beam sputtering , 2003 .

[35]  Takayoshi Hayashi,et al.  CoPt–C nanogranular magnetic thin films , 1997 .

[36]  K. Suganuma,et al.  Encapsulation of cobalt oxide nanoparticles and Ar in boron nitride nanocapsules , 2001 .

[37]  Kolomenskii,et al.  Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam. , 1995, Physical review. B, Condensed matter.

[38]  O. Kitakami,et al.  Particle size effects and surface anisotropy in Fe-based granular films , 1998 .

[39]  Spohn,et al.  Small-angle x-ray scattering under grazing incidence: The cross section in the distorted-wave Born approximation. , 1995, Physical review. B, Condensed matter.

[40]  L. J. Chen,et al.  Structural evolution in Ge+ implantation amorphous Si , 2003 .

[41]  B. Das,et al.  Phase‐separated Fe and Co particles in a BN matrix , 1987 .

[42]  J. D. Cooper,et al.  Chemical applications of the mössbauer effect. Part 1.—The bonding in iron borides , 1964 .

[43]  G. Hadjipanayis,et al.  FePt/BN granular films for high-density recording media , 2002 .

[44]  U. Bäverstam,et al.  Analysis of the electron transport in conversion electron Mössbauer spectroscopy (CEMS) , 1978 .

[45]  M. Fujii,et al.  Thin Films of Carbon Nanocapsules and Onion-Like Graphitic Particles Prepared by the Cosputtering Method , 2000 .

[46]  C. Chien,et al.  Giant magnetic coercivity and percolation effects in granular Fe(SiO2) solids , 1987 .

[47]  D. Babonneau,et al.  Microstructural study of a C–Fe alloy synthesized by ion-beam sputtering co-deposition , 1999 .