Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate

[1]  G McHale,et al.  Topography driven spreading. , 2004, Physical review letters.

[2]  B. Ratner,et al.  Protein adsorption on mixtures of hydroxyl- and methyl-terminated alkanethiols self-assembled monolayers. , 2003, Journal of biomedical materials research. Part A.

[3]  M. Nomizu,et al.  Blood compatible aspects of DNA-modified polysulfone membrane-protein adsorption and platelet adhesion. , 2003, Biomaterials.

[4]  Dong-Wha Park,et al.  Kinetic and mechanistic study on the chemical vapor deposition of titanium dioxide thin films by in situ FT-IR using TTIP , 2003 .

[5]  K. Okimura,et al.  Ionic densities and ionization fractions of sputtered titanium in radio frequency magnetron sputtering , 2003 .

[6]  Y. Hatanaka,et al.  Hydrophilicity of amorphous TiO2 ultra-thin films , 2003 .

[7]  M. Textor,et al.  Chemically patterned, metal oxide based surfaces produced by photolithographic techniques for studying protein- and cell-surface interactions I: Microfabrication and surface characterization. , 2003, Biomaterials.

[8]  David M. Collard,et al.  Fibronectin adsorption and cell adhesion to mixed monolayers of tri(ethylene glycol)- and methyl-terminated alkanethiols , 2003 .

[9]  L. Schlapbach,et al.  Creation of nanostructures to study the topographical dependency of protein adsorption , 2002 .

[10]  S. Wunder,et al.  The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. , 2002, Biomaterials.

[11]  E. Cappelli,et al.  Wettability modification of titanium sheets induced by activated surface treatment , 2002 .

[12]  M. Textor,et al.  Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition , 2002, Journal of materials science. Materials in medicine.

[13]  Mircea Modreanu,et al.  On the structure, morphology and electrical conductivities of titanium oxide thin films , 2002 .

[14]  D. Castner,et al.  Biomedical surface science: Foundations to frontiers , 2002 .

[15]  M. Grätzel,et al.  Surface Modification of Titanium with Phosphonic Acid To Improve Bone Bonding: Characterization by XPS and ToF-SIMS , 2002 .

[16]  P. Somasundaran,et al.  Adsorption and dissolution behavior of human plasma fibronectin on thermally and chemically modified titanium dioxide particles. , 2002, Biomaterials.

[17]  S. Słomkowski,et al.  Hydrophobic Protein−Polypyrrole Interactions: The Role of van der Waals and Lewis Acid−Base Forces As Determined by Contact Angle Measurements , 2002 .

[18]  M. Miles,et al.  Characterization of Ultraflat Titanium Oxide Surfaces , 2002 .

[19]  Julie Gold,et al.  Protein Adsorption on Model Surfaces with Controlled Nanotopography and Chemistry , 2002 .

[20]  M. Miles,et al.  Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness , 2001 .

[21]  Klaus D. Jandt,et al.  Atomic force microscopy of biomaterials surfaces and interfaces , 2001 .

[22]  Y. Leprince-Wang,et al.  Study of the growth morphology of TiO2 thin films by AFM and TEM , 2001 .

[23]  L. Schlapbach,et al.  Protein adsorption on topographically nanostructured titanium , 2001 .

[24]  Dean-Mo Liu,et al.  Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films , 2000 .

[25]  M. Miles,et al.  Human Plasma Fibrinogen Adsorption on Ultraflat Titanium Oxide Surfaces Studied with Atomic Force Microscopy , 2000 .

[26]  R. Marchant,et al.  Individual plasma proteins detected on rough biomaterials by phase imaging AFM. , 2000, Journal of biomedical materials research.

[27]  D. Grainger,et al.  Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. , 2000, Journal of biomedical materials research.

[28]  P. Drob,et al.  Characterisation of anodic oxide films formed on titanium and two ternary titanium alloys in hydrochloric acid solutions , 2000 .

[29]  C. Whang,et al.  Titanium oxide films on Si(100) deposited by electron-beam evaporation at 250 °C , 2000 .

[30]  G. Palasantzas,et al.  Influence of proximity effects in superconductor/normal–metal junctions from mound roughness and film growth mechanisms , 2000 .

[31]  A. Higuchi,et al.  Growth of L929 cells on polymeric films prepared by Langmuir–Blodgett and casting methods , 2000, Journal of biomaterials science. Polymer edition.

[32]  T. Matsuda,et al.  Adhesion Forces of the Blood Plasma Proteins on Self-Assembled Monolayer Surfaces of Alkanethiolates with Different Functional Groups Measured by an Atomic Force Microscope , 1999 .

[33]  R. Schlögl,et al.  Atomic force microscopic studies of oxide thin films on organic self-assembled monolayers , 1999 .

[34]  E. Sacher,et al.  The cleaning and thiolation of commercial titanium for use in dental prostheses , 1999 .

[35]  Y. Dufrêne,et al.  Influence of substratum surface properties on the organization of adsorbed collagen films: In situ characterization by atomic force microscopy , 1999 .

[36]  Y. Chen,et al.  In vivo investigation of blood compatibility of titanium oxide films. , 1998, Journal of biomedical materials research.

[37]  H. Rack,et al.  Titanium alloys in total joint replacement--a materials science perspective. , 1998, Biomaterials.

[38]  P. Somasundaran,et al.  Surface analysis of human plasma fibronectin adsorbed to commercially pure titanium materials. , 1998, Journal of biomedical materials research.

[39]  A. Piancastelli,et al.  Albumin adhesion on ceramics and correlation with their Z-potential. , 1998, Biomaterials.

[40]  G. Whitesides,et al.  Effect of Surface Wettability on the Adsorption of Proteins and Detergents , 1998 .

[41]  M. Textor,et al.  Immobilization of the cell-adhesive peptide Arg–Gly–Asp–Cys (RGDC) on titanium surfaces by covalent chemical attachment , 1997, Journal of materials science. Materials in medicine.

[42]  A Curtis,et al.  Topographical control of cells. , 1997, Biomaterials.

[43]  R. Marchant,et al.  Three Dimensional Structure of Human Fibrinogen under Aqueous Conditions Visualized by Atomic Force Microscopy , 1997, Thrombosis and Haemostasis.

[44]  A Curtis,et al.  Guidance and activation of murine macrophages by nanometric scale topography. , 1996, Experimental cell research.

[45]  P. Descouts,et al.  Structural characterization of oxidized titanium surfaces , 1995 .

[46]  J. Sullivan,et al.  Surface characterisation of plasma-nitrided titanium: an XPS study , 1995 .

[47]  Håkan Mattsson,et al.  Surface spectroscopic characterization of titanium implant materials , 1990 .

[48]  R. Messier,et al.  Geometry of thin‐film morphology , 1985 .

[49]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[50]  Zhi‐Kang Xu,et al.  Acrylonitrile-based copolymer membranes containing reactive groups: effects of surface-immobilized poly(ethylene glycol)s on anti-fouling properties and blood compatibility , 2004 .

[51]  M. Textor,et al.  Surface characterization , 1999 .

[52]  Jack E. Lemons,et al.  Medical Applications of Titanium and Its Alloys: The Material and Biological Issues , 1996 .

[53]  S. G. Mason,et al.  An experimental study of some effects of solid surface roughness on wetting , 1980 .

[54]  W. B. Pearson,et al.  A handbook of lattice spacings and structures of metals and alloys , 1958 .