Uncertainties on mean areal precipitation: assessment and impact on streamflow simulations

Abstract. This paper investigates the influence of mean areal rainfall estimation errors on a specific case study: the use of lumped conceptual rainfall-runoff models to simulate the flood hydrographs of three small to medium-sized catchments of the upper Loire river. This area (3200 km2) is densely covered by an operational network of stream and rain gauges. It is frequently exposed to flash floods and the improvement of flood forecasting models is then a crucial concern. Particular attention has been drawn to the development of an error model for rainfall estimation consistent with data in order to produce realistic streamflow simulation uncertainty ranges. The proposed error model combines geostatistical tools based on kriging and an autoregressive model to account for temporal dependence of errors. It has been calibrated and partly validated for hourly mean areal precipitation rates. Simulated error scenarios were propagated into two calibrated rainfall-runoff models using Monte Carlo simulations. Three catchments with areas ranging from 60 to 3200 km2 were tested to reveal any possible links between the sensitivity of the model outputs to rainfall estimation errors and the size of the catchment. The results show that a large part of the rainfall-runoff (RR) modelling errors can be explained by the uncertainties on rainfall estimates, especially in the case of smaller catchments. These errors are a major factor limiting accuracy and sharpness of rainfall-runoff simulations, and thus their operational use for flood forecasting.

[1]  Konstantine P. Georgakakos,et al.  Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrologic model , 2004 .

[2]  N. Nandakumar,et al.  Uncertainty in rainfall—runoff model simulations and the implications for predicting the hydrologic effects of land-use change , 1997 .

[3]  Eric Servat,et al.  Sensitivity of conceptual rainfall-runoff algorithms to errors in input data — case of the GR2M model , 1995 .

[4]  V. Singh,et al.  Computer Models of Watershed Hydrology , 1995 .

[5]  Marco Borga,et al.  Accuracy of radar rainfall estimates for streamflow simulation , 2002 .

[6]  Rachel Datin Outils opérationnels pour la prévision des crues rapides : traitement des incertitudes et intégration des prévisions météorologiques : développements de Topmodel pour la prise en compte de la variabilité spatiale de la pluie : application au bassin versant de l'Ardèche , 1998 .

[7]  Robert J. Moore,et al.  Hydrological modelling using raingauge- and radar-based estimators of areal rainfall , 2008 .

[8]  M. Borga,et al.  Influence of errors in radar rainfall estimates on hydrological modeling prediction uncertainty , 2006 .

[9]  Nilo Nascimento,et al.  GR3J: a daily watershed model with three free parameters , 1999 .

[10]  G. Bastin,et al.  On the Accuracy of Areal Rainfall Estimation - a Case-study , 1987 .

[11]  Jeroen P. van der Sluijs,et al.  A framework for dealing with uncertainty due to model structure error , 2004 .

[12]  Jonathan J. Gourley,et al.  A method for identifying sources of model uncertainty in rainfall-runoff simulations , 2004 .

[13]  C. Perrin,et al.  Improvement of a parsimonious model for streamflow simulation , 2003 .

[14]  L. Moulin Prévision des crues rapides avec des modèles hydrologiques globaux. Applications aux bassins opérationnels de la Loire supérieure : évaluation des modélisations, prise en compte des incertitudes sur les précipitations moyennes spatiales et utilisation de prévisions météorologiques. , 2007 .

[15]  Nanée Chahinian,et al.  Large Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment — MOPEX , 2006 .

[16]  Thibault Mathevet,et al.  Impact of biased and randomly corrupted inputs on the efficiency and the parameters of watershed models , 2006 .

[17]  Hui-Chung Yeh,et al.  Rainfall network design using kriging and entropy , 2008 .

[18]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[19]  Michael Rode,et al.  Hydrology and Earth System Sciences Uncertainties in Selected River Water Quality Data , 2022 .

[20]  K. Georgakakos,et al.  On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic model suitable for operational use , 2001 .

[21]  François Anctil,et al.  Improvement of rainfall-runoff forecasts through mean areal rainfall optimization , 2006 .

[22]  Xudong Sun,et al.  Flood estimation using radar and raingauge data , 2000 .

[23]  C. Perrin,et al.  Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments , 2001 .

[24]  B. J. Williams,et al.  Input errors in rainfall-runoff modelling , 1988 .

[25]  Uwe Haberlandt,et al.  Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event , 2007 .

[26]  A. Kieffer Weisse,et al.  A comparison of methods for mapping statistical characteristics of heavy rainfall in the French Alps: the use of daily information / Comparaison de méthodes de cartographie de paramètres statistiques des précipitations extrêmes dans les Alpes françaises: apport de l'information journalière , 2002 .

[27]  K. Dulal,et al.  A Framework for the Analysis of Uncertainty in the Measurement of Precipitation Data: a Case Study for Nepal , 2006 .

[28]  S. Sorooshian,et al.  Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed , 1994 .

[29]  B. Johansson Areal Precipitation and Temperature in the Swedish Mountains: An Evaluation from a Hydrological Perspective , 2000 .

[30]  Witold F. Krajewski,et al.  Radar hydrology: rainfall estimation. , 2002 .

[31]  Chong-Yu Xu,et al.  Sensitivity of monthly rainfall-runoff models to input errors and data length , 1994 .

[32]  Brice Boudevillain,et al.  Variability of rain drop size distribution and its effect on the Z-R relationship: A case study for intense Mediterranean rainfall , 2008 .

[33]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[34]  H. Wheater,et al.  The significance of spatial rainfall representation for flood runoff estimation : A numerical evaluation based on the Lee catchment, UK , 2006 .

[35]  R. Moore,et al.  Rainfall and sampling uncertainties: A rain gauge perspective , 2008 .

[36]  H. Andrieu,et al.  The Catastrophic Flash-Flood Event of 8–9 September 2002 in the Gard Region, France: A First Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory , 2005 .

[37]  C. Obled,et al.  Objective analyses and mapping techniques for rainfall fields: An objective comparison , 1982 .

[38]  Sylvie Galle,et al.  Assessing the water balance in the Sahel: Impact of small scale rainfall variability on runoff. Part 1: Rainfall variability analysis , 2006 .

[39]  A. Bárdossy,et al.  Influence of rainfall observation network on model calibration and application , 2006 .

[40]  Jens Christian Refsgaard,et al.  Estimation of Catchment Rainfall Uncertainty and its Influence on Runoff Prediction , 1988 .

[41]  T. Lebel,et al.  Assessing the water balance in the Sahel : Impact of small scale rainfall variability on runoff. Part 2: Idealized modeling of runoff sensitivity , 2007 .

[42]  B. V. D. Van Den Hurk,et al.  Hydrology and Earth System Sciences Discharge Simulations Performed with a Hydrological Model Using Bias Corrected Regional Climate Model Input , 2022 .

[43]  V. Klemeš,et al.  Operational Testing of Hydrological Simulation Models , 2022 .

[44]  H. Andrieu,et al.  Stochastic-dynamical rainfall simulation based on weather radar volume scan data , 2003 .

[45]  A. Jakeman,et al.  How much complexity is warranted in a rainfall‐runoff model? , 1993 .