Homologous critical behavior in the molecular frameworks Zn(CN)2 and Cd(imidazolate)2.

Using a combination of single-crystal and powder X-ray diffraction measurements, we study temperature- and pressure-driven structural distortions in zinc(II) cyanide (Zn(CN)2) and cadmium(II) imidazolate (Cd(im)2), two molecular frameworks with the anticuprite topology. Under a hydrostatic pressure of 1.52 GPa, Zn(CN)2 undergoes a first-order displacive phase transition to an orthorhombic phase, with the corresponding atomic displacements characterized by correlated collective tilts of pairs of Zn-centered tetrahedra. This displacement pattern sheds light on the mechanism of negative thermal expansion in ambient-pressure Zn(CN)2. We find that the fundamental mechanical response exhibited by Zn(CN)2 is mirrored in the temperature-dependent behavior of Cd(im)2. Our results suggest that the thermodynamics of molecular frameworks may be governed by considerations of packing efficiency while also depending on dynamic instabilities of the underlying framework topology.

[1]  K. Chapman,et al.  Exploiting high pressures to generate porosity, polymorphism, and lattice expansion in the nonporous molecular framework Zn(CN)2. , 2013, Journal of the American Chemical Society.

[2]  Lars Peters,et al.  Giant negative linear compressibility in zinc dicyanoaurate. , 2013, Nature materials.

[3]  Andrew L. Goodwin,et al.  Supramolecular mechanics in a metal–organic framework , 2012 .

[4]  A. Cheetham,et al.  Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. , 2012, Chemical communications.

[5]  A. Goodwin,et al.  Charge-ice dynamics in the negative thermal expansion material Cd(CN)2 , 2012, 1206.0437.

[6]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[7]  S. Leoni,et al.  The energy landscapes of zeolitic imidazolate frameworks (ZIFs): towards quantifying the presence of substituents on the imidazole ring , 2012 .

[8]  Andrew L. Goodwin,et al.  PASCal: a principal axis strain calculator for thermal expansion and compressibility determination , 2012, 1204.3007.

[9]  Shourong Zhu,et al.  The first homochiral coordination polymer with temperature-independent piezoelectric and dielectric properties , 2012 .

[10]  Dorina F. Sava,et al.  Trapping guests within a nanoporous metal-organic framework through pressure-induced amorphization. , 2011, Journal of the American Chemical Society.

[11]  D. Fairen-jimenez,et al.  Structural chemistry, monoclinic-to-orthorhombic phase transition, and CO2 adsorption behavior of the small pore scandium terephthalate, Sc2(O2CC6H4)CO2)3, and its nitro- and amino-functionalized derivatives. , 2011, Inorganic chemistry.

[12]  Wonyoung Choe,et al.  "Nanoscale lattice fence" in a metal-organic framework: interplay between hinged topology and highly anisotropic thermal response. , 2011, Journal of the American Chemical Society.

[13]  C. Tang,et al.  Fast X-ray powder diffraction on I11 at Diamond. , 2011, Journal of synchrotron radiation.

[14]  Darrick J. Williams,et al.  Thermal expansion in 3d-metal Prussian Blue Analogs-A survey study , 2011, 1104.3554.

[15]  P. Jain,et al.  Mechanism of the order–disorder phase transition, and glassy behavior in the metal-organic framework [(CH3)2NH2]Zn(HCOO)3 , 2011, Proceedings of the National Academy of Sciences.

[16]  A. Cheetham,et al.  Thermal amorphization of zeolitic imidazolate frameworks. , 2011, Angewandte Chemie.

[17]  R. Mittal,et al.  Relationship between phonons and thermal expansion in Zn(CN)2 and Ni(CN)2 from inelastic neutron scattering and ab initio calculations , 2010, 1009.5540.

[18]  C. Serre,et al.  Multistep N2 breathing in the metal-organic framework co(1,4-benzenedipyrazolate). , 2010, Journal of the American Chemical Society.

[19]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[20]  Song Gao,et al.  Disorder-order ferroelectric transition in the metal formate framework of [NH4][Zn(HCOO)3]. , 2010, Journal of the American Chemical Society.

[21]  Lei Zhang,et al.  Amorphization of metal-organic framework MOF-5 at unusually low applied pressure , 2010 .

[22]  D. Zhao,et al.  Cadmium imidazolate frameworks with polymorphism, high thermal stability, and a large surface area. , 2010, Chemistry.

[23]  A. Soper,et al.  Structure and properties of an amorphous metal-organic framework. , 2010, Physical review letters.

[24]  K. Chapman,et al.  Pressure-induced amorphization and porosity modification in a metal-organic framework. , 2009, Journal of the American Chemical Society.

[25]  François-Xavier Coudert,et al.  Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues , 2009 .

[26]  P. Jain,et al.  Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture. , 2009, Journal of the American Chemical Society.

[27]  J. Parker,et al.  Beamline I11 at Diamond: a new instrument for high resolution powder diffraction. , 2009, The Review of scientific instruments.

[28]  Yong Liu,et al.  Negative pressure induced ferroelectric phase transition in rutile TiO2 , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  Xiaoping Wang,et al.  Crystallographic observation of dynamic gas adsorption sites and thermal expansion in a breathable fluorous metal-organic framework. , 2009, Angewandte Chemie.

[30]  Matthew G. Tucker,et al.  Large negative linear compressibility of Ag3[Co(CN)6] , 2008, Proceedings of the National Academy of Sciences.

[31]  V. K. Peterson,et al.  Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2. , 2008, Angewandte Chemie.

[32]  J. Simpson,et al.  Origin of the Exceptional Negative Thermal Expansion in Metal-Organic Framework-5 Zn 4 O(1,4-benzenedicarboxylate) 3 , 2008 .

[33]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[34]  S. Elliott,et al.  Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.

[35]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[36]  A. Goodwin,et al.  Nanoporosity and exceptional negative thermal expansion in single-network cadmium cyanide. , 2008, Angewandte Chemie.

[37]  C. Serre,et al.  An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption , 2007 .

[38]  Josef W. Zwanziger,et al.  Phonon dispersion and Gruneisen parameters of zinc dicyanide and cadmium dicyanide from first principles : Origin of negative thermal expansion , 2007 .

[39]  K. Chapman,et al.  Pressure enhancement of negative thermal expansion behavior and induced framework softening in zinc cyanide. , 2007, Journal of the American Chemical Society.

[40]  T. Sairam,et al.  A spectroscopic resolution of the structure of Zn(CN)2 , 2007 .

[41]  M. Hagen,et al.  Low energy phonons in the NTE compounds Zn(CN)2Zn(CN)2 and ZnPt(CN)6ZnPt(CN)6 , 2006 .

[42]  Andrew L. Goodwin,et al.  Rigid unit modes and intrinsic flexibility in linearly bridged framework structures , 2006 .

[43]  William A. Goddard,et al.  The ferroelectric and cubic phases in BaTiO3 ferroelectrics are also antiferroelectric , 2006, Proceedings of the National Academy of Sciences.

[44]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[45]  K. Chapman,et al.  Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2: an atomic pair distribution function analysis. , 2005, Journal of the American Chemical Society.

[46]  A. Goodwin,et al.  Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials , 2005 .

[47]  X. You,et al.  Determination of the Solvothermal Synthesis Mechanism of Metal Imidazolates by X-ray Single-Crystal Studies of a Photoluminescent Cadmium(II) Imidazolate and Its Intermediate Involving Piperazine , 2004 .

[48]  Richard I. Cooper,et al.  CRYSTALS version 12: software for guided crystal structure analysis , 2003 .

[49]  Song Gao,et al.  The silica-like extended polymorphism of cobalt(II) imidazolate three-dimensional frameworks: X-ray single-crystal structures and magnetic properties. , 2003, Chemistry.

[50]  A. Maspero,et al.  Synthesis and ab-initio XRPD structure of group 12 imidazolato polymers. , 2003, Chemical communications.

[51]  M. Kunz,et al.  Pressure-induced phase transition in malayaite, CaSnOSiO4 , 2003 .

[52]  G. J. Halder,et al.  Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material , 2002, Science.

[53]  John S. O. Evans,et al.  Pressure-induced cubic-to-orthorhombic phase transformation in the negative thermal expansion material HfW2O8 , 2001 .

[54]  D. VanDerveer,et al.  New High-Pressure Form of the Negative Thermal Expansion Materials Zirconium Molybdate and Hafnium Molybdate , 2001 .

[55]  J. Haines,et al.  Structural evolution of rutile-type and CaCl2-type germanium dioxide at high pressure , 2000 .

[56]  Naofumi Yamada,et al.  Ultra-precise thermal expansion measurements of ceramic and steel gauge blocks with an interferometric dilatometer , 2000 .

[57]  D. E. Partin,et al.  The Disordered Crystal Structures of Zn(CN)2and Ga(CN)3 , 1997 .

[58]  Z. Hu,et al.  Compressibility, Phase Transitions, and Oxygen Migration in Zirconium Tungstate, ZrW2O8 , 1997, Science.

[59]  John S. O. Evans,et al.  Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.

[60]  J. Leger,et al.  The high-pressure phase transition sequence from the rutile-type through to the cotunnite-type structure in , 1996 .

[61]  D. Vanderbilt,et al.  Competing structural instabilities in cubic perovskites. , 1994, Physical review letters.

[62]  Maria Cristina Burla,et al.  SIR92 – a program for automatic solution of crystal structures by direct methods , 1994 .

[63]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[64]  A. M. Glazer,et al.  A nitrogen‐gas‐stream cryostat for general X‐ray diffraction studies , 1986 .

[65]  J. P. Remeika,et al.  Soft Ferroelectric Modes in Lead Titanate , 1970 .

[66]  A. Cheetham,et al.  Comparison of the relative stability of zinc and lithium-boron zeolitic imidazolate frameworks , 2012 .

[67]  H. K. Poswal,et al.  Structural phase transitions in Zn(CN)2 under high pressures , 2009 .

[68]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[69]  John S. O. Evans,et al.  Pressure-induced cubic-to-orthorhombic phase transition in ZrW 2 O 8 , 1999 .

[70]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .