Identification and Visualization of the Intellectual Structure in Graphene Research

After discovering the promising properties of graphene, the research in the field is attracting large grants and sponsors with an exponential rise in the number of papers and applications. This paper presents a global map of graphene research and its intellectual structure through the terms of more than 50,000 documents extracted from Scopus database from 1998 to 2015. The unit of analysis has been the descriptors (including Authors keywords and Indexed keywords) and its co-occurrence, using fractional counting, as unit of measure. The main research lines identified are: Fundamental Research, Functionalization and Biomedical Applications, Technology and Devices, Material Sciences, Energy Storage, Optics and Chemical Properties and Sensors. Using overlay maps we show the graphen research of USA, Europe-28, China and their evolution through longitudinal maps, comparing them. USA begins leading the world output in graphene, but is surpassed by China in 2011 and Europe in 2014, as a result of stimulus policies and financial support. The output of China is so intense from that year on, that it is difficult to understand the recent world scientific production in graphene without its participation, marking the research trends in some cases. We believe that this information may be very useful for the scientific community involved in this field as it reflects a large-scale analysis how research has changed over time, and for helping policimakers in research planning. This study is moreover intended to offer a useful tool for the graphene scientific community, revealing at a glance the main research lines. The methodology can be replicated in any other field of science to explore its intellectual structure and its evolution.

[1]  Chao Long,et al.  Comparing keywords plus of WOS and author keywords: A case study of patient adherence research , 2016, J. Assoc. Inf. Sci. Technol..

[2]  Kevin W. Boyack,et al.  Mapping the backbone of science , 2004, Scientometrics.

[3]  Ang Li,et al.  Research on the semantic-based co-word analysis , 2011, Scientometrics.

[4]  EUGENE GARFIELD Towards Scientography , 1986 .

[5]  M. Gregory,et al.  Equivalent-Continuum Modeling of Nano-Structured Materials , 2001 .

[6]  Ismael Rafols,et al.  A global map of science based on the ISI subject categories , 2009, J. Assoc. Inf. Sci. Technol..

[7]  Loet Leydesdorff,et al.  Co‐word maps and topic modeling: A comparison using small and medium‐sized corpora (N < 1,000) , 2015, J. Assoc. Inf. Sci. Technol..

[8]  László Gulyás,et al.  Large-scale temporal analysis of computer and information science , 2013 .

[9]  Ludo Waltman,et al.  Constructing bibliometric networks: A comparison between full and fractional counting , 2016, J. Informetrics.

[10]  Li Wang,et al.  Research frontiers and trends in graphene research , 2011 .

[11]  E. Muñoz-Sandoval,et al.  Trends in nanoscience, nanotechnology, and carbon nanotubes: a bibliometric approach , 2013, Journal of Nanoparticle Research.

[12]  Qin He,et al.  Knowledge Discovery Through Co-Word Analysis , 1999, Libr. Trends.

[13]  Chaomei Chen,et al.  Searching for intellectual turning points: Progressive knowledge domain visualization , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Ed C. M. Noyons,et al.  A unified approach to mapping and clustering of bibliometric networks , 2010, J. Informetrics.

[15]  A. Pullia,et al.  Single Particle Extinction and Scattering allows novel optical characterization of aerosols , 2017, Journal of Nanoparticle Research.

[16]  Kevin W. Boyack,et al.  Toward a consensus map of science , 2009, J. Assoc. Inf. Sci. Technol..

[17]  Qing Zhao,et al.  Energy Supply Strategy for Battery Electric Vehicles in China , 2010, 2010 International Conference on Optoelectronics and Image Processing.

[18]  Loet Leydesdorff,et al.  Mapping interdisciplinarity at the interfaces between the Science Citation Index and the Social Science Citation Index , 2007, Scientometrics.

[19]  Kevin W. Boyack,et al.  Clustering More than Two Million Biomedical Publications: Comparing the Accuracies of Nine Text-Based Similarity Approaches , 2011, PloS one.

[20]  Enrique Herrera-Viedma,et al.  SciMAT: A new science mapping analysis software tool , 2012, J. Assoc. Inf. Sci. Technol..

[21]  Gobinda G. Chowdhury,et al.  Bibliometric cartography of information retrieval research by using co-word analysis , 2001, Inf. Process. Manag..

[22]  C. López-Pujalte,et al.  An overview of animal science research 1945-2011 through science mapping analysis. , 2015, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[23]  Kevin W. Boyack,et al.  * Sandia Is a Multiprogram Laboratory Operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract De-ac04-94al85000. Quantitative Evaluation of Large Maps of Science , 2022 .

[24]  Zaida Chinchilla-Rodríguez,et al.  Identification and visualization of the intellectual structure and the main research lines in nanoscience and nanotechnology at the worldwide level , 2017, Journal of Nanoparticle Research.

[25]  Loet Leydesdorff,et al.  Full and fractional counting in bibliometric networks , 2016, J. Informetrics.

[26]  Vicente P. Guerrero-Bote,et al.  Journal maps on the basis of Scopus data: A comparison with the Journal Citation Reports of the ISI , 2010 .

[27]  Ludo Waltman,et al.  Software survey: VOSviewer, a computer program for bibliometric mapping , 2009, Scientometrics.

[28]  Alexander I. Terekhov,et al.  R & D on carbon nanostructures in Russia: scientometric analysis, 1990–2011 , 2015, Journal of Nanoparticle Research.

[29]  Benjamín Vargas-Quesada,et al.  Research involving women and health in the Medline database, 1965–2005: co-term analysis and visualization of main lines of research , 2011, Scientometrics.

[30]  Zaida Chinchilla-Rodríguez,et al.  Coverage analysis of Scopus: A journal metric approach , 2007, Scientometrics.

[31]  Jean Pierre Courtial,et al.  Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry , 1991, Scientometrics.

[32]  B. Scrosati,et al.  The role of graphene for electrochemical energy storage. , 2015, Nature materials.

[33]  Chaomei Chen,et al.  Visualizing knowledge domains , 2005, Annu. Rev. Inf. Sci. Technol..

[34]  Henk F. Moed,et al.  Combining Mapping and Citation Analysis for Evaluative Bibliometric Purposes: A Bibliometric Study , 1999, J. Am. Soc. Inf. Sci..

[35]  C. Berndt,et al.  Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles , 2014, Journal of Nanoparticle Research.

[36]  G. Odegard Equivalent-Continuum Modeling of Nanostructured Materials , 2007 .

[37]  Md. Sajibul Alam Bhuyan,et al.  Synthesis of graphene , 2016, International Nano Letters.

[38]  Enrique Herrera-Viedma,et al.  Analysing the scientific evolution of e-Government using a science mapping approach , 2017, Gov. Inf. Q..

[39]  Chaomei Chen,et al.  CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature , 2006, J. Assoc. Inf. Sci. Technol..

[40]  Loet Leydesdorff,et al.  Visualization of the citation impact environments of scientific journals: An online mapping exercise , 2009, J. Assoc. Inf. Sci. Technol..

[41]  Enrique Herrera-Viedma,et al.  25years at Knowledge-Based Systems , 2015 .

[42]  Loet Leydesdorff,et al.  Mapping the geography of science: Distribution patterns and networks of relations among cities and institutes , 2010, J. Assoc. Inf. Sci. Technol..

[44]  Masood Fooladi,et al.  A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases , 2013, ArXiv.

[45]  A. Bonaccorsi Search Regimes and the Industrial Dynamics of Science , 2008 .

[46]  Henk F. Moed,et al.  Mapping of science by combined co-citation and word analysis. II: Dynamical aspects , 1991 .

[47]  E. Herrera‐Viedma,et al.  Analyzing the Scientific Evolution of Social Work Using Science Mapping , 2015 .

[48]  Kevin W. Boyack,et al.  Using global mapping to create more accurate document-level maps of research fields , 2011, J. Assoc. Inf. Sci. Technol..

[49]  H. P. F. Peters,et al.  Co-word-based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling , 1993 .

[50]  Zaida Chinchilla-Rodríguez,et al.  How to Combine Research Guarantor and Collaboration Patterns to Measure Scientific Performance of Countries in Scientific Fields: Nanoscience and Nanotechnology as a Case Study , 2016, Front. Res. Metr. Anal.

[51]  Enrique Herrera-Viedma,et al.  A bibliometric study about the research based on hybridating the fuzzy logic field and the other computational intelligent techniques: A visual approach , 2010, Int. J. Hybrid Intell. Syst..

[52]  Jan Youtie,et al.  Graphene Research Profile: UK and US Publications, 2000-2010 , 2010 .

[53]  E. Garfield,et al.  The geography of science: disciplinary and national mappings , 1985 .

[54]  吕鹏辉,et al.  Bibliometric trend analysis on global graphene research , 2011 .

[55]  Xinliang Feng,et al.  From 2004 to 2014: a fruitful decade for graphene research in China. , 2014, Small.

[56]  Ismael Rafols,et al.  Global maps of science based on the new Web-of-Science categories , 2012, Scientometrics.

[57]  H. Small,et al.  Identifying emerging topics in science and technology , 2014 .

[58]  H. P. F. Peters,et al.  Co-word-based science maps of chemical engineering. Part II: Representations by combined clustering and multidimensional scaling , 1993 .

[59]  Loet Leydesdorff,et al.  Dynamic animations of journal maps: Indicators of structural changes and interdisciplinary developments , 2009, J. Assoc. Inf. Sci. Technol..

[60]  Gisela Cantos-Mateos,et al.  Stem cell research: bibliometric analysis of main research areas through KeyWords Plus , 2012, Aslib Proc..

[61]  V. Svorcik,et al.  Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions , 2015, Journal of Nanoparticle Research.

[62]  Henk F. Moed,et al.  Mapping of science by combined co-citation and word analysis, I. Structural aspects , 1991, J. Am. Soc. Inf. Sci..

[63]  Francisco Herrera,et al.  Journal of Informetrics , 2022 .

[64]  Ray J. Paul,et al.  Fitting the jigsaw of citation: Information visualization in domain analysis , 2001, J. Assoc. Inf. Sci. Technol..

[65]  Enrique Herrera-Viedma,et al.  25 years at Knowledge-Based Systems: A bibliometric analysis , 2015, Knowl. Based Syst..

[66]  Loet Leydesdorff,et al.  Mapping (USPTO) Patent Data using Overlays to Google Maps , 2011, J. Assoc. Inf. Sci. Technol..

[67]  Zaida Chinchilla-Rodríguez,et al.  Estudio evolutivo de la investigación española con células madre.: Visualización e identificación de las principales líneas de investigación , 2014 .

[68]  Loet Leydesdorff,et al.  The relations between qualitative theory and scientometric methods in science and technology studies , 1989, Scientometrics.

[69]  Vladimir Batagelj,et al.  Visualization and analysis of SCImago Journal & Country Rank structure via journal clustering , 2016, Aslib J. Inf. Manag..

[70]  Francisco Collazo-Reyes Growth of the number of indexed journals of Latin America and the Caribbean: the effect on the impact of each country , 2013, Scientometrics.

[71]  Kexin Chen Graphene Research in China , 2013 .

[72]  Krzysztof Klincewicz The emergent dynamics of a technological research topic: the case of graphene , 2015, Scientometrics.

[73]  Zaida Chinchilla-Rodríguez,et al.  Visualizing the marrow of science , 2007 .

[74]  P. Wallace The Band Theory of Graphite , 1947 .

[75]  E. Herrera‐Viedma,et al.  Analyzing the research in Integrative & Complementary Medicine by means of science mapping. , 2014, Complementary therapies in medicine.

[76]  Philip Shapira,et al.  Graphene enterprise: mapping innovation and business development in a strategic emerging technology , 2016, Journal of Nanoparticle Research.

[77]  Manuel J. Cobo,et al.  Analysing the conceptual evolution of qualitative marketing research through science mapping analysis , 2014, Scientometrics.

[78]  Enrique Herrera-Viedma,et al.  A Bibliometric Analysis of the Intelligent Transportation Systems Research Based on Science Mapping , 2014, IEEE Transactions on Intelligent Transportation Systems.

[79]  Francisco Herrera,et al.  Science mapping software tools: Review, analysis, and cooperative study among tools , 2011, J. Assoc. Inf. Sci. Technol..

[80]  Michael M. Hopkins,et al.  Strategic intelligence on emerging technologies: Scientometric overlay mapping , 2013, J. Assoc. Inf. Sci. Technol..

[81]  Kevin W. Boyack,et al.  Creation of a highly detailed, dynamic, global model and map of science , 2014, J. Assoc. Inf. Sci. Technol..

[82]  Alan L. Porter,et al.  Science overlay maps: A new tool for research policy and library management , 2009, J. Assoc. Inf. Sci. Technol..

[83]  Dag W. Aksnes,et al.  Ranking national research systems by citation indicators. A comparative analysis using whole and fractionalised counting methods , 2012, J. Informetrics.

[84]  Ismael Rafols,et al.  Interactive overlays: A new method for generating global journal maps from Web-of-Science data , 2011, J. Informetrics.

[85]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[86]  Zaida Chinchilla-Rodríguez,et al.  A new technique for building maps of large scientific domains based on the cocitation of classes and categories , 2004, Scientometrics.

[87]  Kevin W. Boyack,et al.  Mapping the structure and evolution of chemistry research , 2009, Scientometrics.

[88]  M. Callon,et al.  From translations to problematic networks: An introduction to co-word analysis , 1983 .

[89]  Chaomei Chen,et al.  Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal-journal citations , 2013, J. Assoc. Inf. Sci. Technol..

[90]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.