Simulations of subatomic many-body physics on a quantum frequency processor
暂无分享,去创建一个
Andrew M. Weiner | Joseph M. Lukens | Pavel Lougovski | Natalie Klco | Hsuan-Hao Lu | Gaute Hagen | Martin J. Savage | Thomas Papenbrock | A. Weiner | T. Morris | N. Klco | J. Lukens | M. Savage | P. Lougovski | G. Hagen | T. Papenbrock | Andreas Ekström | Hsuan-Hao Lu | Titus D. Morris | Aaina Bansal | A. Ekström | A. Bansal | Aaina Bansal
[1] F. Verstraete,et al. Real-time simulation of the Schwinger effect with matrix product states , 2016, Physical Review D.
[2] Dean Lee,et al. Volume dependence of N-body bound states , 2017, 1701.00279.
[3] R. Fletcher. Practical Methods of Optimization , 1988 .
[4] F. Verstraete,et al. Hamiltonian simulation of the Schwinger model at finite temperature , 2016, 1606.03385.
[5] M. Savage,et al. Nucleon-nucleon effective field theory without pions , 1999, nucl-th/9902056.
[6] Philippe Emplit,et al. Frequency Bin Entangled Photons , 2009, 0910.1325.
[7] D. R. Entem,et al. Chiral effective field theory and nuclear forces , 2011, 1105.2919.
[8] T. Yamazaki,et al. Helium nuclei, deuteron, and dineutron in 2+1 flavor lattice QCD , 2012, 1207.4277.
[9] M. Wise,et al. A New expansion for nucleon-nucleon interactions , 1998, nucl-th/9801034.
[10] G. Parisi. The strategy for computing the hadronic mass spectrum , 1984 .
[11] R. Roth,et al. Structure of the Lightest Tin Isotopes. , 2017, Physical review letters.
[12] Laura Mančinska,et al. Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.
[13] L. Susskind,et al. Charge shielding and quark confinement in the massive schwinger model , 1975 .
[14] P. Alam,et al. R , 1823, The Herodotus Encyclopedia.
[15] P. Zoller,et al. Self-verifying variational quantum simulation of lattice models , 2018, Nature.
[16] H. Hammer,et al. Modern theory of nuclear forces , 2004, 0811.1338.
[17] E. Solano,et al. Quantum-classical computation of Schwinger model dynamics using quantum computers , 2018, Physical Review A.
[18] EFFECTIVE FIELD THEORY FOR FEW-NUCLEON SYSTEMS* , 2002, nucl-th/0203055.
[19] Tucker Carrington,et al. A general framework for discrete variable representation basis sets , 2002 .
[20] Steven R. White. Numerical canonical transformation approach to quantum many-body problems , 2002 .
[21] Peter C Humphreys,et al. Linear optical quantum computing in a single spatial mode. , 2013, Physical review letters.
[22] J. Cirac,et al. Thermal evolution of the Schwinger model with Matrix Product Operators , 2015, 1505.00279.
[23] Nicholas A. Peters,et al. Controllable two-photon interference with versatile quantum frequency processor , 2018, 1803.10712.
[24] Pavel Lougovski,et al. Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing. , 2017, Physical review letters.
[25] F. Pederiva,et al. Spectra and scattering of light lattice nuclei from effective field theory , 2015, 1506.09048.
[26] J. Light,et al. Generalized discrete variable approximation in quantum mechanics , 1985 .
[27] J. Gambetta,et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.
[28] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[29] David A Mazziotti,et al. Anti-hermitian contracted schrödinger equation: direct determination of the two-electron reduced density matrices of many-electron molecules. , 2006, Physical review letters.
[30] K. A. Wendt,et al. Infrared length scale and extrapolations for the no-core shell model , 2015, 1503.07144.
[31] William Detmold,et al. High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems , 2009, 0905.0466.
[32] T. Hatsuda,et al. Medium-heavy nuclei from nucleon-nucleon interactions in lattice QCD , 2014, 1408.4892.
[33] M. Girvin,et al. Quantum Simulation of Gauge Theories and Inflation , 2019, Journal Club for Condensed Matter Physics.
[34] J. Schwinger,et al. GAUGE INVARIANCE AND MASS. PART II. , 1962 .
[35] S. Lawrence,et al. Simulation of Nonequilibrium Dynamics on a Quantum Computer. , 2018, Physical review letters.
[36] J. O'Brien,et al. Witnessing eigenstates for quantum simulation of Hamiltonian spectra , 2016, Science Advances.
[37] R. Furnstahl,et al. Systematic expansion for infrared oscillator basis extrapolations , 2013, 1312.6876.
[38] A. Ukawa,et al. Helium nuclei in quenched lattice QCD , 2009, 0912.1383.
[39] G. Milburn,et al. Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.
[40] R. Pooser,et al. Cloud Quantum Computing of an Atomic Nucleus. , 2018, Physical Review Letters.
[41] T. Yamazaki,et al. Study of quark mass dependence of binding energy for light nuclei in 2+1 flavor lattice QCD , 2015, 1502.04182.
[42] Yuya Shimizu,et al. Grassmann tensor renormalization group approach to one-flavor lattice Schwinger model , 2014, 1403.0642.
[43] K. Jansen,et al. The mass spectrum of the Schwinger model with matrix product states , 2013, 1305.3765.
[44] M. Lüscher. Volume dependence of the energy spectrum in massive quantum field theories , 1986 .
[45] B. M. Fulk. MATH , 1992 .
[46] S. Beane,et al. The Deuteron and Exotic Two-Body Bound States from Lattice QCD , 2011, 1109.2889.
[47] J. Rarity,et al. Experimental quantum Hamiltonian learning , 2017, Nature Physics.
[48] Ryan Babbush,et al. The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.
[49] M. Lüscher,et al. Volume dependence of the energy spectrum in massive quantum field theories , 1986 .
[50] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[51] P. Bedaque,et al. Renormalization of the Three-Body System with Short-Range Interactions , 1998, nucl-th/9809025.
[52] Alán Aspuru-Guzik,et al. A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.
[53] K. Wendt,et al. Effective field theory in the harmonic oscillator basis , 2015, 1512.03802.
[54] A. Roggero,et al. Ground-state properties of 4 He and 16 O extrapolated from lattice QCD with pionless EFT , 2017, 1701.06516.
[55] P. Navrátil,et al. Few-nucleon systems in a translationally invariant harmonic oscillator basis , 1999, nucl-th/9907054.
[56] S. Beane,et al. High statistics analysis using anisotropic clover lattices: Single hadron correlation functions , 2009, 0903.2990.
[57] E. Ovrum,et al. Quantum computation algorithm for many-body studies , 2007, 0705.1928.
[58] T. Monz,et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.
[59] Quantum computation of scattering in scalar quantum field theories , 2014 .
[60] M. P. Fry. Gauge Invariance and Mass. , 1968 .
[61] John Preskill,et al. Quantum Algorithms for Quantum Field Theories , 2011, Science.
[62] B. Lanyon,et al. Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.
[63] U. van Kolck,et al. Effective field theory for lattice nuclei. , 2013, Physical review letters.
[64] M. Savage,et al. On the Statistics of Baryon Correlation Functions in Lattice QCD , 2016, 1611.07643.
[65] G. Guerreschi,et al. Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.
[66] Charles Meunier. [High precision]. , 2008, Perspective infirmiere : revue officielle de l'Ordre des infirmieres et infirmiers du Quebec.
[67] T. Carrington,et al. Discrete‐Variable Representations and their Utilization , 2007 .
[68] The High precision, charge dependent Bonn nucleon-nucleon potential (CD-Bonn) , 2000, nucl-th/0006014.
[69] J. Kogut,et al. Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .
[70] M. Bañuls,et al. Chiral condensate in the Schwinger model with matrix product operators , 2016, 1603.05002.
[71] S. Quaglioni,et al. Recent developments in no-core shell-model calculations , 2009, 0904.0463.
[72] Joseph M. Lukens,et al. Frequency-encoded photonic qubits for scalable quantum information processing , 2016, 1612.03131.
[73] J. O'Brien,et al. Simulating the vibrational quantum dynamics of molecules using photonics , 2018, Nature.
[74] M. Wise,et al. Two nucleon systems from effective field theory , 1998, nucl-th/9802075.
[75] C. Forss'en,et al. Large-scale exact diagonalizations reveal low-momentum scales of nuclei , 2017, 1712.09951.
[76] R. J. Furnstahl,et al. Corrections to Nuclear Energies and Radii in Finite Oscillator Spaces , 2012, 1207.6100.
[77] Poolad Imany,et al. A controlled-NOT gate for frequency-bin qubits , 2018, npj Quantum Information.
[78] Takumi Iritani,et al. Systematics of the HAL QCD potential at low energies in lattice QCD , 2018, Physical Review D.
[79] Christine Silberhorn,et al. Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings , 2018, 1803.04316.
[80] Tsuyoshi Murata,et al. {m , 1934, ACML.
[81] Daniel Jean Baye,et al. Generalised meshes for quantum mechanical problems , 1986 .
[82] Graham D. Marshall,et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing , 2018, Nature Photonics.
[83] S. Beane,et al. Light nuclei and hypernuclei from quantum chromodynamics in the limit of SU(3) flavor symmetry , 2012, 1206.5219.
[84] Saul D. Cohen,et al. Hyperon-nucleon interactions from quantum chromodynamics and the composition of dense nuclear matter. , 2012, Physical review letters.
[85] P. Coveney,et al. Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.
[86] W. Marsden. I and J , 2012 .
[87] G. Vallone,et al. Integrated photonic quantum gates for polarization qubits , 2011, Nature communications.
[88] Gregory R. Steinbrecher,et al. Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.
[89] Yuya Shimizu,et al. Critical behavior of the lattice Schwinger model with a topological term at θ = π using the Grassmann tensor renormalization group , 2014, 1408.0897.
[90] W. Nazarewicz,et al. Neutron and weak-charge distributions of the 48Ca nucleus , 2015, Nature Physics.
[91] J. Cirac,et al. Density Induced Phase Transitions in the Schwinger Model: A Study with Matrix Product States. , 2016, Physical review letters.
[92] P. Navrátil,et al. Local three-nucleon interaction from chiral effective field theory , 2007, 0707.4680.
[93] C. Weedbrook,et al. Quantum simulation of quantum field theory using continuous variables , 2015, Physical Review A.
[94] C. Monroe,et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.
[95] Petr Navrátil,et al. Ab initio no core shell model , 2013 .
[96] G. R. Jansen,et al. Pion-less effective field theory for atomic nuclei and lattice nuclei , 2017, Physical Review C.
[97] P. Alam. ‘S’ , 2021, Composites Engineering: An A–Z Guide.