Simulations of subatomic many-body physics on a quantum frequency processor

Simulating complex many-body quantum phenomena is a major scientific impetus behind the development of quantum computing, and a range of technologies are being explored to address such systems. We present the results of the largest photonics-based simulation to date, applied in the context of subatomic physics. Using an all-optical quantum frequency processor, the ground-state energies of light nuclei including the triton (H3), He3, and the alpha particle (He4) are computed. Complementing these calculations and utilizing a 68-dimensional Hilbert space, our photonic simulator is used to perform subnucleon calculations of the two- and three-body forces between heavy mesons in the Schwinger model. This work is a first step in simulating subatomic many-body physics on quantum frequency processors - augmenting classical computations that bridge scales from quarks to nuclei.

[1]  F. Verstraete,et al.  Real-time simulation of the Schwinger effect with matrix product states , 2016, Physical Review D.

[2]  Dean Lee,et al.  Volume dependence of N-body bound states , 2017, 1701.00279.

[3]  R. Fletcher Practical Methods of Optimization , 1988 .

[4]  F. Verstraete,et al.  Hamiltonian simulation of the Schwinger model at finite temperature , 2016, 1606.03385.

[5]  M. Savage,et al.  Nucleon-nucleon effective field theory without pions , 1999, nucl-th/9902056.

[6]  Philippe Emplit,et al.  Frequency Bin Entangled Photons , 2009, 0910.1325.

[7]  D. R. Entem,et al.  Chiral effective field theory and nuclear forces , 2011, 1105.2919.

[8]  T. Yamazaki,et al.  Helium nuclei, deuteron, and dineutron in 2+1 flavor lattice QCD , 2012, 1207.4277.

[9]  M. Wise,et al.  A New expansion for nucleon-nucleon interactions , 1998, nucl-th/9801034.

[10]  G. Parisi The strategy for computing the hadronic mass spectrum , 1984 .

[11]  R. Roth,et al.  Structure of the Lightest Tin Isotopes. , 2017, Physical review letters.

[12]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[13]  L. Susskind,et al.  Charge shielding and quark confinement in the massive schwinger model , 1975 .

[14]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[15]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[16]  H. Hammer,et al.  Modern theory of nuclear forces , 2004, 0811.1338.

[17]  E. Solano,et al.  Quantum-classical computation of Schwinger model dynamics using quantum computers , 2018, Physical Review A.

[18]  EFFECTIVE FIELD THEORY FOR FEW-NUCLEON SYSTEMS* , 2002, nucl-th/0203055.

[19]  Tucker Carrington,et al.  A general framework for discrete variable representation basis sets , 2002 .

[20]  Steven R. White Numerical canonical transformation approach to quantum many-body problems , 2002 .

[21]  Peter C Humphreys,et al.  Linear optical quantum computing in a single spatial mode. , 2013, Physical review letters.

[22]  J. Cirac,et al.  Thermal evolution of the Schwinger model with Matrix Product Operators , 2015, 1505.00279.

[23]  Nicholas A. Peters,et al.  Controllable two-photon interference with versatile quantum frequency processor , 2018, 1803.10712.

[24]  Pavel Lougovski,et al.  Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing. , 2017, Physical review letters.

[25]  F. Pederiva,et al.  Spectra and scattering of light lattice nuclei from effective field theory , 2015, 1506.09048.

[26]  J. Light,et al.  Generalized discrete variable approximation in quantum mechanics , 1985 .

[27]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  David A Mazziotti,et al.  Anti-hermitian contracted schrödinger equation: direct determination of the two-electron reduced density matrices of many-electron molecules. , 2006, Physical review letters.

[30]  K. A. Wendt,et al.  Infrared length scale and extrapolations for the no-core shell model , 2015, 1503.07144.

[31]  William Detmold,et al.  High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems , 2009, 0905.0466.

[32]  T. Hatsuda,et al.  Medium-heavy nuclei from nucleon-nucleon interactions in lattice QCD , 2014, 1408.4892.

[33]  M. Girvin,et al.  Quantum Simulation of Gauge Theories and Inflation , 2019, Journal Club for Condensed Matter Physics.

[34]  J. Schwinger,et al.  GAUGE INVARIANCE AND MASS. PART II. , 1962 .

[35]  S. Lawrence,et al.  Simulation of Nonequilibrium Dynamics on a Quantum Computer. , 2018, Physical review letters.

[36]  J. O'Brien,et al.  Witnessing eigenstates for quantum simulation of Hamiltonian spectra , 2016, Science Advances.

[37]  R. Furnstahl,et al.  Systematic expansion for infrared oscillator basis extrapolations , 2013, 1312.6876.

[38]  A. Ukawa,et al.  Helium nuclei in quenched lattice QCD , 2009, 0912.1383.

[39]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[40]  R. Pooser,et al.  Cloud Quantum Computing of an Atomic Nucleus. , 2018, Physical Review Letters.

[41]  T. Yamazaki,et al.  Study of quark mass dependence of binding energy for light nuclei in 2+1 flavor lattice QCD , 2015, 1502.04182.

[42]  Yuya Shimizu,et al.  Grassmann tensor renormalization group approach to one-flavor lattice Schwinger model , 2014, 1403.0642.

[43]  K. Jansen,et al.  The mass spectrum of the Schwinger model with matrix product states , 2013, 1305.3765.

[44]  M. Lüscher Volume dependence of the energy spectrum in massive quantum field theories , 1986 .

[45]  B. M. Fulk MATH , 1992 .

[46]  S. Beane,et al.  The Deuteron and Exotic Two-Body Bound States from Lattice QCD , 2011, 1109.2889.

[47]  J. Rarity,et al.  Experimental quantum Hamiltonian learning , 2017, Nature Physics.

[48]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[49]  M. Lüscher,et al.  Volume dependence of the energy spectrum in massive quantum field theories , 1986 .

[50]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[51]  P. Bedaque,et al.  Renormalization of the Three-Body System with Short-Range Interactions , 1998, nucl-th/9809025.

[52]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[53]  K. Wendt,et al.  Effective field theory in the harmonic oscillator basis , 2015, 1512.03802.

[54]  A. Roggero,et al.  Ground-state properties of 4 He and 16 O extrapolated from lattice QCD with pionless EFT , 2017, 1701.06516.

[55]  P. Navrátil,et al.  Few-nucleon systems in a translationally invariant harmonic oscillator basis , 1999, nucl-th/9907054.

[56]  S. Beane,et al.  High statistics analysis using anisotropic clover lattices: Single hadron correlation functions , 2009, 0903.2990.

[57]  E. Ovrum,et al.  Quantum computation algorithm for many-body studies , 2007, 0705.1928.

[58]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[59]  Quantum computation of scattering in scalar quantum field theories , 2014 .

[60]  M. P. Fry Gauge Invariance and Mass. , 1968 .

[61]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[62]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[63]  U. van Kolck,et al.  Effective field theory for lattice nuclei. , 2013, Physical review letters.

[64]  M. Savage,et al.  On the Statistics of Baryon Correlation Functions in Lattice QCD , 2016, 1611.07643.

[65]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[66]  Charles Meunier [High precision]. , 2008, Perspective infirmiere : revue officielle de l'Ordre des infirmieres et infirmiers du Quebec.

[67]  T. Carrington,et al.  Discrete‐Variable Representations and their Utilization , 2007 .

[68]  The High precision, charge dependent Bonn nucleon-nucleon potential (CD-Bonn) , 2000, nucl-th/0006014.

[69]  J. Kogut,et al.  Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .

[70]  M. Bañuls,et al.  Chiral condensate in the Schwinger model with matrix product operators , 2016, 1603.05002.

[71]  S. Quaglioni,et al.  Recent developments in no-core shell-model calculations , 2009, 0904.0463.

[72]  Joseph M. Lukens,et al.  Frequency-encoded photonic qubits for scalable quantum information processing , 2016, 1612.03131.

[73]  J. O'Brien,et al.  Simulating the vibrational quantum dynamics of molecules using photonics , 2018, Nature.

[74]  M. Wise,et al.  Two nucleon systems from effective field theory , 1998, nucl-th/9802075.

[75]  C. Forss'en,et al.  Large-scale exact diagonalizations reveal low-momentum scales of nuclei , 2017, 1712.09951.

[76]  R. J. Furnstahl,et al.  Corrections to Nuclear Energies and Radii in Finite Oscillator Spaces , 2012, 1207.6100.

[77]  Poolad Imany,et al.  A controlled-NOT gate for frequency-bin qubits , 2018, npj Quantum Information.

[78]  Takumi Iritani,et al.  Systematics of the HAL QCD potential at low energies in lattice QCD , 2018, Physical Review D.

[79]  Christine Silberhorn,et al.  Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings , 2018, 1803.04316.

[80]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[81]  Daniel Jean Baye,et al.  Generalised meshes for quantum mechanical problems , 1986 .

[82]  Graham D. Marshall,et al.  Large-scale silicon quantum photonics implementing arbitrary two-qubit processing , 2018, Nature Photonics.

[83]  S. Beane,et al.  Light nuclei and hypernuclei from quantum chromodynamics in the limit of SU(3) flavor symmetry , 2012, 1206.5219.

[84]  Saul D. Cohen,et al.  Hyperon-nucleon interactions from quantum chromodynamics and the composition of dense nuclear matter. , 2012, Physical review letters.

[85]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[86]  W. Marsden I and J , 2012 .

[87]  G. Vallone,et al.  Integrated photonic quantum gates for polarization qubits , 2011, Nature communications.

[88]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[89]  Yuya Shimizu,et al.  Critical behavior of the lattice Schwinger model with a topological term at θ = π using the Grassmann tensor renormalization group , 2014, 1408.0897.

[90]  W. Nazarewicz,et al.  Neutron and weak-charge distributions of the 48Ca nucleus , 2015, Nature Physics.

[91]  J. Cirac,et al.  Density Induced Phase Transitions in the Schwinger Model: A Study with Matrix Product States. , 2016, Physical review letters.

[92]  P. Navrátil,et al.  Local three-nucleon interaction from chiral effective field theory , 2007, 0707.4680.

[93]  C. Weedbrook,et al.  Quantum simulation of quantum field theory using continuous variables , 2015, Physical Review A.

[94]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[95]  Petr Navrátil,et al.  Ab initio no core shell model , 2013 .

[96]  G. R. Jansen,et al.  Pion-less effective field theory for atomic nuclei and lattice nuclei , 2017, Physical Review C.

[97]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.