Medical Imaging in the Diagnosis of Osteoporosis and Estimation of the Individual Bone Fracture Risk

Osteoporosis is a degenerative disease of the bone. In an advanced state, bone weakened by osteoporosis may fracture spontaneously with debilitating consequences. Beginning osteoporosis can be treated with exercise and calcium/vitamin D supplement, whereas osteoclast-inhibiting drugs are used in advanced stages. Choosing the proper treatment requires accurate diagnosis of the degree of osteoporosis. The most commonly used measurement of bone mineral content or bone mineral density provides a general orientation, but is insufficient as a predictor for load fractures or spontaneous fractures. There is wide agreement that the averaging nature of the density measurement does not take into account the microarchitectural deterioration, and imaging methods that provide a prediction of the load-bearing quality of the trabecular network are actively investigated. Studies have shown that X-ray projection images, computed tomography (CT) images, and magnetic resonance images (MRI) contain texture information that relates to the trabecular density and connectivity. In this chapter, image analysis methods are presented which allow to quantify the degree of microarchitectural deterioration of trabecular bone and have the potential to predict the load-bearing capability of bone.

[1]  Juha Töyräs,et al.  Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone. , 2009, Ultrasound in medicine & biology.

[2]  C. Christiansen,et al.  Accuracy of measurements of body composition by dual-energy x-ray absorptiometry in vivo. , 1993, The American journal of clinical nutrition.

[3]  P. Bettica,et al.  Evidence that fluoride therapy increases trabecular bone density in a peripheral skeletal site. , 1993, The Journal of clinical endocrinology and metabolism.

[4]  Alison C Jones,et al.  Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. , 2008, Medical engineering & physics.

[5]  William M. O'Fallon,et al.  Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. , 1990 .

[6]  G. Henebry,et al.  Lacunarity analysis of spatial pattern in CT images of vertebral trabecular bone for assessing osteoporosis. , 2002, Medical engineering & physics.

[7]  Rachid Harba,et al.  A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform , 2005, BMC Medical Imaging.

[8]  P Rüegsegger,et al.  Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. , 1995, Medical engineering & physics.

[9]  Harry K. Genant,et al.  Application of micro-ct assessment of 3-d bone microstructure in preclinical and clinical studies , 2009, Journal of Bone and Mineral Metabolism.

[10]  S. Zucker,et al.  Evaluating the fractal dimension of surfaces , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  C. L. Benhamou,et al.  Clinical interest of bone texture analysis in osteoporosis: a case control multicenter study , 2008, Osteoporosis International.

[12]  A. Cotten,et al.  CT scan texture analysis of the distal radius: influence of age and menopausal status. , 1998, Revue du rhumatisme.

[13]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[14]  T. Keaveny,et al.  A biomechanical perspective on bone quality. , 2006, Bone.

[15]  Roberto Rossi,et al.  MR Imaging and Osteoporosis: Fractal Lacunarity Analysis of Trabecular Bone , 2006, IEEE Transactions on Information Technology in Biomedicine.

[16]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[17]  Qian Huang,et al.  Can the fractal dimension of images be measured? , 1994, Pattern Recognit..

[18]  F. Wehrli,et al.  Fast Low‐Angle Dual Spin‐Echo (FLADE): A new robust pulse sequence for structural imaging of trabecular bone , 2006, Magnetic resonance in medicine.

[19]  T. Southard,et al.  Detection of simulated osteoporosis in maxillae using radiographic texture analysis , 1996, IEEE Transactions on Biomedical Engineering.

[20]  R. E. Small,et al.  Uses and limitations of bone mineral density measurements in the management of osteoporosis. , 2005, MedGenMed : Medscape general medicine.

[21]  Maryellen L Giger,et al.  Radiographic texture analysis in the characterization of trabecular patterns in periprosthetic osteolysis. , 2008, Academic radiology.

[22]  A. Hosokawa Effect of porosity distribution in the propagation direction on ultrasound waves through cancellous bone , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  C B Caldwell,et al.  Characterization of vertebral strength using digital radiographic analysis of bone structure. , 1995, Medical physics.

[24]  D. Bauer,et al.  Assessing fracture risk and effects of osteoporosis drugs: bone mineral density and beyond. , 2009, The American journal of medicine.

[25]  Judith E. Adams,et al.  Quantitative computed tomography. , 2009, European journal of radiology.

[26]  C. Cooper,et al.  Epidemiology of osteoporosis. , 2008, Best practice & research. Clinical endocrinology & metabolism.

[27]  C. Hernandez How can bone turnover modify bone strength independent of bone mass? , 2008, Bone.

[28]  F Lavaste,et al.  Three-dimensional geometrical and mechanical modelling of the lumbar spine. , 1992, Journal of biomechanics.

[29]  G. Henebry,et al.  Fractal signature and lacunarity in the measurement of the texture of trabecular bone in clinical CT images. , 2001, Medical engineering & physics.

[30]  S. Majumdar,et al.  Application of fractal geometry techniques to the study of trabecular bone. , 1993, Medical physics.

[31]  C. Chappard,et al.  Laws’ masks descriptors applied to bone texture analysis: an innovative and discriminant tool in osteoporosis , 2008, Skeletal Radiology.

[32]  M Vogel,et al.  Trabecular bone pattern factor--a new parameter for simple quantification of bone microarchitecture. , 1992, Bone.

[33]  J. Boone,et al.  Comprar Essential Physics Of Medical Imaging, International Edition | Jerrold T. Bushberg | 9781451118100 | Lippincott Williams & Wilkins , 2012 .

[34]  G. Beaupré,et al.  The influence of bone volume fraction and ash fraction on bone strength and modulus. , 2001, Bone.

[35]  R. Ritchie How does human bone resist fracture? , 2010, Annals of the New York Academy of Sciences.

[36]  W M O'Fallon,et al.  Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. , 1990, The New England journal of medicine.

[37]  R. Rizzoli,et al.  Bone strength and its determinants , 2003, Osteoporosis International.

[38]  T. Lang Quantitative computed tomography. , 2010, Radiologic clinics of North America.

[39]  Nacim Betrouni,et al.  Fractal and multifractal analysis: A review , 2009, Medical Image Anal..

[40]  Daniel Chappard,et al.  Trabecular bone microarchitecture: a review. , 2008, Morphologie : bulletin de l'Association des anatomistes.

[41]  M. Ito,et al.  Trabecular texture analysis of CT images in the relationship with spinal fracture. , 1995, Radiology.

[42]  W G Geraets,et al.  Fractal properties of bone. , 2000, Dento maxillo facial radiology.

[43]  J S Thomsen,et al.  Relationships between static histomorphometry and bone strength measurements in human iliac crest bone biopsies. , 1998, Bone.

[44]  Keith D. Hartt,et al.  Nonparametric Estimation Of Fractal Dimension , 1988, Other Conferences.

[45]  S. Boonen,et al.  The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. , 2005, Clinical therapeutics.

[46]  Rachid Harba,et al.  Anisotropy changes in post-menopausal osteoporosis: characterization by a new index applied to trabecular bone radiographic images , 2005, Osteoporosis International.

[47]  W. Hargrove,et al.  Lacunarity analysis: A general technique for the analysis of spatial patterns. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  S. Rockoff,et al.  The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae , 2005, Calcified Tissue Research.

[49]  S A Goldstein,et al.  Biomechanics of Fracture: Is Bone Mineral Density Sufficient to Assess Risk? , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[50]  Harold M. Frost,et al.  Mathematical Elements of Lamellar Bone Remodelling , 1964 .

[51]  D. Saupe Algorithms for random fractals , 1988 .

[52]  L. Benhamou,et al.  Bone Texture Analysis on Direct Digital Radiographic Images: Precision Study and Relationship with Bone Mineral Density at the Os Calcis , 2007, Calcified Tissue International.

[53]  H J Gundersen,et al.  Star volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variation. , 1989, Bone.

[54]  M. Underweiser,et al.  On the fractal nature of trabecular structure. , 1994, Medical physics.

[55]  P. Rüegsegger,et al.  A new method for the model‐independent assessment of thickness in three‐dimensional images , 1997 .

[56]  J. Rittweger Can exercise prevent osteoporosis? , 2006, Journal of musculoskeletal & neuronal interactions.

[57]  Tim D Spector,et al.  Femoral neck trabecular patterns predict osteoporotic fractures. , 2002, Medical physics.

[58]  N. Kikuchi,et al.  A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. , 1994, Journal of biomechanics.

[59]  P. Rüegsegger,et al.  Direct Three‐Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[60]  TOR Hildebrand,et al.  Quantification of Bone Microarchitecture with the Structure Model Index. , 1997, Computer methods in biomechanics and biomedical engineering.

[61]  Paul Sajda,et al.  Complete Volumetric Decomposition of Individual Trabecular Plates and Rods and Its Morphological Correlations With Anisotropic Elastic Moduli in Human Trabecular Bone , 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[62]  E. Gelsema,et al.  Estimation of fractal dimension in radiographs. , 1996, Medical physics.

[63]  R. L. Webber,et al.  Fractal dimension from radiographs of peridental alveolar bone. A possible diagnostic indicator of osteoporosis. , 1992, Oral surgery, oral medicine, and oral pathology.

[64]  L. Mosekilde,et al.  A model of vertebral trabecular bone architecture and its mechanical properties. , 1990, Bone.

[65]  M. Karlsson,et al.  Physical activity, muscle function, falls and fractures , 2008, Food & nutrition research.

[66]  J. Reginster,et al.  Fluoride Salts are no Better at Preventing New Vertebral Fractures than Calcium-Vitamin D in Postmenopausal Osteoporosis: The FAVOStudy , 1998, Osteoporosis International.

[67]  H. Kemper,et al.  The Effect of Exercise Training Programs on Bone Mass: A Meta-analysis of Published Controlled Trials in Pre- and Postmenopausal Women , 1999, Osteoporosis International.

[68]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[69]  C. M. Langton,et al.  The role of ultrasound in the assessment of osteoporosis: A review , 2005, Osteoporosis International.

[70]  F. Martínez-López,et al.  A study of the different methods usually employed to compute the fractal dimension , 2002 .

[71]  F Peyrin,et al.  Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach. , 2009, Journal of biomechanics.

[72]  R. Kumaresan,et al.  Fractal dimension in the analysis of medical images , 1992, IEEE Engineering in Medicine and Biology Magazine.

[73]  Mark A. Haidekker,et al.  Advanced Biomedical Image Analysis , 2010 .

[74]  C. Gennari Calcium and vitamin D nutrition and bone disease of the elderly , 2001, Public Health Nutrition.

[75]  M. Grynpas,et al.  Fluoride effects on bone crystals , 1990, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[76]  Kay Dickersin,et al.  Osteoporosis prevention, diagnosis, and therapy. , 2000, NIH consensus statement.

[77]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[78]  G. M. Blake,et al.  Fractal Analysis of Trabecular Bone in Knee Osteoarthritis (OA) is a More Sensitive Marker of Disease Status than Bone Mineral Density (BMD) , 2005, Calcified Tissue International.

[79]  A. Parfitt Bone histomorphometry: standardization of nomenclature, symbols and units (summary of proposed system). , 1988, Bone.

[80]  Hsuan-Teh Hu,et al.  Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure - a finite element study , 2010, BMC musculoskeletal disorders.

[81]  Tony M Keaveny,et al.  Role of Trabecular Microarchitecture in Whole‐Vertebral Body Biomechanical Behavior , 2009, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[82]  O Panagiotopoulou,et al.  Finite element analysis (FEA): Applying an engineering method to functional morphology in anthropology and human biology , 2009, Annals of human biology.

[83]  J. Bushberg The Essential Physics of Medical Imaging , 2001 .

[84]  G. Niebur,et al.  Biomechanics of trabecular bone. , 2001, Annual review of biomedical engineering.

[85]  Pinliang Dong,et al.  Test of a new lacunarity estimation method for image texture analysis , 2000 .

[86]  T. Pope,et al.  Predicting osseous changes in ankle fractures , 1993, IEEE Engineering in Medicine and Biology Magazine.

[87]  H. Gundersen,et al.  Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. , 1991, Bone.

[88]  P. Rüegsegger,et al.  Ridge number density: a new parameter for in vivo bone structure analysis. , 1997, Bone.

[89]  Punam K. Saha,et al.  Three‐dimensional digital topological characterization of cancellous bone architecture , 2000 .

[90]  L. Gibson The mechanical behaviour of cancellous bone. , 1985, Journal of biomechanics.

[91]  R Andresen,et al.  Issues of threshold selection when determining the fractal dimension in HRCT slices of lumbar vertebrae. , 2000, The British journal of radiology.