Deconvolution under Poisson noise using exact data fidelity and synthesis or analysis sparsity priors

In this paper, we propose a Bayesian MAP estimator for solving the deconvolution problems when the observations are corrupted by Poisson noise. Towards this goal, a proper data fidelity term (log-likelihood) is introduced to reflect the Poisson statistics of the noise. On the other hand, as a prior, the images to restore are assumed to be positive and sparsely represented in a dictionary of waveforms such as wavelets or curvelets. Both analysis and synthesis-type sparsity priors are considered. Piecing together the data fidelity and the prior terms, the deconvolution problem boils down to the minimization of non-smooth convex functionals (for each prior). We establish the well-posedness of each optimization problem, characterize the corresponding minimizers, and solve them by means of proximal splitting algorithms originating from the realm of non-smooth convex optimization theory. Experimental results are conducted to demonstrate the potential applicability of the proposed algorithms to astronomical imaging datasets.

[1]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[2]  Mohamed-Jalal Fadili,et al.  Total Variation Projection With First Order Schemes , 2011, IEEE Transactions on Image Processing.

[3]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[4]  Fionn Murtagh,et al.  Fast communication , 2002 .

[5]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[6]  Jean-Luc Starck,et al.  Sparse Representation-based Image Deconvolution by iterative Thresholding , 2006 .

[7]  Fionn Murtagh,et al.  Multiresolution Support Applied to Image Filtering and Restoration , 1995, CVGIP Graph. Model. Image Process..

[8]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[9]  Mohamed-Jalal Fadili,et al.  A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations , 2008, IEEE Transactions on Image Processing.

[10]  Henry Stark,et al.  Image recovery: Theory and application , 1987 .

[11]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[12]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[13]  Mário A. T. Figueiredo,et al.  Signal restoration with overcomplete wavelet transforms: comparison of analysis and synthesis priors , 2009, Optical Engineering + Applications.

[14]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[15]  P. L. Combettes,et al.  A proximal decomposition method for solving convex variational inverse problems , 2008, 0807.2617.

[16]  A. Nehorai,et al.  Deconvolution methods for 3-D fluorescence microscopy images , 2006, IEEE Signal Processing Magazine.

[17]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[18]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[19]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[20]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[21]  Robert D. Nowak,et al.  Fast multiresolution photon-limited image reconstruction , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[22]  Fionn Murtagh,et al.  Image restoration with noise suppression using the wavelet transform , 1994 .

[23]  J. Spingarn Partial inverse of a monotone operator , 1983 .

[24]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[25]  Josiane Zerubia,et al.  A deconvolution method for confocal microscopy with total variation regularization , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[26]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[27]  Michael Unser,et al.  FAST WAVELET-REGULARIZED IMAGE DECONVOLUTION , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[28]  M. Bertero,et al.  Image deblurring with Poisson data: from cells to galaxies , 2009 .

[29]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[30]  Patrick L. Combettes,et al.  Proximal Thresholding Algorithm for Minimization over Orthonormal Bases , 2007, SIAM J. Optim..

[31]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[32]  Jean-Luc Starck,et al.  Astronomical image and data analysis , 2002 .

[33]  S. Mallat A wavelet tour of signal processing , 1998 .

[34]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[35]  B. R. Hunt,et al.  Digital Image Restoration , 1977 .

[36]  Albert Bijaoui,et al.  DeQuant: a flexible multiresolution restoration framework , 2004, Signal Process..

[37]  Larry L. Schumaker,et al.  Curve and Surface Fitting: Saint-Malo 1999 , 2000 .

[38]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[39]  Mohamed-Jalal Fadili,et al.  Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity, by Jean-Luc Starck, Fionn Murtagh, and Jalal M. Fadili , 2010, J. Electronic Imaging.

[40]  Michael Unser,et al.  A fast thresholded Landweber algorithm for general wavelet bases: Application to 3D deconvolution microscopy , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[41]  P. G. Ciarlet,et al.  Introduction a l'analyse numerique matricielle et a l'optimisation , 1984 .

[42]  P. Jansson Deconvolution of images and spectra , 1997 .

[43]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[44]  J. Pesquet,et al.  Parallel Proximal Algorithm for Image Restoration , 2011 .