La biocompatibilité des solutions de dialyse péritonéale

[1]  P. Gane,et al.  The triggering of human peritoneal mesothelial cell apoptosis and oncosis by glucose and glycoxydation products. , 2004, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[2]  K. Craig,et al.  The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. , 2004, Kidney international.

[3]  N. Lameire,et al.  The Effects of Peritoneal Dialysis Solutions on Peritoneal Host Defense , 2004, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[4]  Y. Ohta,et al.  Glucose degradation products (GDP) retard remesothelialization independently of D-glucose concentration. , 2003, Kidney international.

[5]  H. Morita,et al.  Short-Term Biological Effects of a New and Less Acidic Fluid for Peritoneal Dialysis , 2003, Blood Purification.

[6]  R. Tilton,et al.  Inhibition of the interaction of AGE-RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. , 2003, Journal of the American Society of Nephrology : JASN.

[7]  K. Książek,et al.  Mesothelial Toxicity of Peritoneal Dialysis Fluids is Related Primarily to Glucose Degradation Products, Not to Glucose Per Se , 2003, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[8]  T. Chan,et al.  Different effects of amino acid-based and glucose-based dialysate from peritoneal dialysis patients on mesothelial cell ultrastructure and function. , 2003, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[9]  S. Meijer,et al.  Single Exposure of Mesothelial Cells to Glucose Degradation Products (GDPs) Yields Early Advanced Glycation End-Products (AGEs) and a Proinflammatory Response , 2003, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[10]  T. Niwa,et al.  Immunohistochemical detection of an AGE, a ligand for macrophage receptor, in peritoneum of CAPD patients. , 2003, Kidney international. Supplement.

[11]  N. Lameire,et al.  Effects of conventional and new peritoneal dialysis fluids on leukocyte recruitment in the rat peritoneal membrane. , 2003, Journal of the American Society of Nephrology : JASN.

[12]  M. Kasuga,et al.  Methylglyoxal induces apoptosis through activation of p38 mitogen-activated protein kinase in rat mesangial cells. , 2003, Kidney international.

[13]  C. Wanner,et al.  Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? , 2003, Kidney international.

[14]  S. Mujais,et al.  Pharmacokinetics of icodextrin in peritoneal dialysis patients. , 2002, Kidney international. Supplement.

[15]  C. Holmes,et al.  Biocompatibility of icodextrin. , 2002, Kidney international. Supplement.

[16]  A. Wieslander,et al.  3,4-Dideoxyglucosone-3-ene (3,4-DGE): a cytotoxic glucose degradation product in fluids for peritoneal dialysis. , 2002, Kidney international.

[17]  V. Monnier,et al.  Alterations in renal mitochondrial respiration in response to the reactive oxoaldehyde methylglyoxal. , 2002, American journal of physiology. Renal physiology.

[18]  R. Krediet,et al.  Clinical advantages of new peritoneal dialysis solutions. , 2002, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[19]  J. van de Voorde,et al.  Hemodynamic effects of peritoneal dialysis solutions on the rat peritoneal membrane: role of acidity, buffer choice, glucose concentration, and glucose degradation products. , 2002, Journal of the American Society of Nephrology : JASN.

[20]  J. Wautier,et al.  [Advanced glycosylation end products (AGE): new toxins?]. , 2002, Nephrologie.

[21]  J. Wautier,et al.  AGEs bind to mesothelial cells via RAGE and stimulate VCAM-1 expression. , 2002, Kidney international.

[22]  M. Brownlee Biochemistry and molecular cell biology of diabetic complications , 2001, Nature.

[23]  P. Södersten,et al.  Acute effects of peritoneal dialysis solutions on appetite in non-uremic rats. , 2001, Kidney international.

[24]  S. Davies,et al.  Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. , 2001, Journal of the American Society of Nephrology : JASN.

[25]  R. Krediet,et al.  Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels. , 2001, Kidney international.

[26]  J. Bernheim,et al.  The Effect of Advanced Glycation End-Products and Aminoguanidine on Tnfα Production by Rat Peritoneal Macrophages , 2001, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[27]  A. Christensson,et al.  Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. , 2001, Kidney international.

[28]  T. Miyata,et al.  Effect of dwell time on carbonyl stress using icodextrin and amino acid peritoneal dialysis fluids. , 2000, Kidney international.

[29]  P. Stenvinkel,et al.  Biocompatibility of New Peritoneal Dialysis Solutions: What Can We Hope to Achieve? , 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[30]  C. Holmes,et al.  Strategies to Reduce Glucose Exposure in Peritoneal Dialysis Patients , 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[31]  U. Frei,et al.  Effect of glucose degradation products on human peritoneal mesothelial cell function. , 2000, Journal of the American Society of Nephrology : JASN.

[32]  A. Tranaeus A long-term study of a bicarbonate/lactate-based peritoneal dialysis solution--clinical benefits. The Bicarbonate/Lactate Study Group. , 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[33]  T. Miyata,et al.  Glucose degradation product methylglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis , 1999, FEBS letters.

[34]  J. Wautier,et al.  HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Cultured Endothelial Cells From Human Arteriovenous Malformations Have Defective Growth Regulation , 2015 .

[35]  K. Nitta,et al.  Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. , 1999, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[36]  M. Jadoul,et al.  Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia. , 1998, Journal of the American Society of Nephrology : JASN.

[37]  J. Cohen Dialysis fluids and monocytes: suicide or murder? , 1998, Kidney international.

[38]  C. Holmes,et al.  Reduced Glucose Degradation Products in Bicarbonate/Lactate-Buffered Peritoneal Dialysis Solutions Produced in Two-Chambered Bags , 1997, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[39]  C van Ypersele de Strihou,et al.  Clearance of pentosidine, an advanced glycation end product, by different modalities of renal replacement therapy. , 1997, Kidney international.

[40]  P. Ronco,et al.  Hyperosmolality suppresses but TGF beta 1 increases MMP9 in human peritoneal mesothelial cells. , 1997, Kidney international.

[41]  T. Shigematsu,et al.  Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. , 1997, Kidney international.

[42]  C. Holmes,et al.  In vitro effects of bicarbonate and bicarbonate-lactate buffered peritoneal dialysis solutions on mesothelial and neutrophil function. , 1996, Journal of the American Society of Nephrology : JASN.

[43]  T. Goodship,et al.  Acid-base regulation in peritoneal dialysis. , 1994, Kidney international. Supplement.

[44]  G. Sacchi,et al.  Peritoneal vascular changes in continuous ambulatory peritoneal dialysis (CAPD): an in vivo model for the study of diabetic microangiopathy. , 1989 .