Random unitary matrices

Methods of constructing random matrices typical of circular unitary and circular orthogonal ensembles are presented. We generate numerically random unitary matrices and show that the statistical properties of their spectra (level-spacing distribution, number variance) and eigenvectors (entropy, participation ratio, eigenvector statistics) confer to the predictions of the random-matrix theory, for both CUE and COE.

[1]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[2]  D. Weaire,et al.  The Anderson localization problem. I. A new numerical approach , 1977 .

[3]  P. A. Mello,et al.  Random matrix physics: Spectrum and strength fluctuations , 1981 .

[4]  M. Kus,et al.  Universality of eigenvector statistics of kicked tops of different symmetries , 1988 .

[5]  J. B. French,et al.  Statistical properties of many-particle spectra V. Fluctuations and symmetries , 1988 .

[6]  F. Haake,et al.  Random Matrix Theory as Statistical Mechanics , 1989 .

[7]  Izrailev,et al.  Scaling properties of band random matrices. , 1990, Physical review letters.

[8]  K. Życzkowski,et al.  Indicators of quantum chaos based on eigenvector statistics , 1990 .

[9]  Zyczkowski,et al.  Random-matrix theory and eigenmodes of dynamical systems. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[10]  U. Smilansky,et al.  Random-matrix description of chaotic scattering: Semiclassical approach. , 1990, Physical review letters.

[11]  K. Jones Entropy of random quantum states , 1990 .

[12]  D. Foster Exact evaluation of the collapse phase boundary for two-dimensional directed polymers , 1990 .

[13]  Level-spacing distributions beyond the Wigner surmise , 1991 .

[14]  Symmetry breaking and localization in quantum chaotic systems. , 1992, Physical review letters.

[15]  K. Życzkowski,et al.  Time-reversal symmetry breaking and the statistical properties of quantum systems , 1992 .

[16]  U. Smilansky,et al.  On the transition to chaotic scattering , 1992 .