Representations versus numberings: on the relationship of two computability notions

Abstract This paper gives an answer to Weihrauch's (Computability, Springer, Berlin, 1987) question whether and, if not always, when an effective map between the computable elements of two represented sets can be extended to a (partial) computable map between the represented sets. Examples are known showing that this is not possible in general. A condition is introduced and for countably based topological T 0 -spaces it is shown that exactly the (partial) effective maps meeting the requirement are extendable. For total effective maps the extra condition is satisfied in the standard cases of effectively given separable metric spaces and continuous directed-complete partial orders, in which the extendability is already known. In the first case a similar result holds also for partial effective maps, but not in the second.

[1]  Paola Giannini,et al.  Effectively Given Domains and Lambda-Calculus Models , 1984, Inf. Control..

[2]  Y. Moschovakis Recursive metric spaces , 1964 .

[3]  Dieter Spreen,et al.  On effective topological spaces , 1998, Journal of Symbolic Logic.

[4]  Sören Stenlund Computable Functionals of Finite Type , 1972 .

[5]  Viggo Stoltenberg-Hansen,et al.  Algebraic and Fixed Point Equations over Inverse Limits of Algebras , 1991, Theor. Comput. Sci..

[6]  Michael Beeson The Unprovability in Intuitionistic Formal Systems of the Continuity of Effective Operations on the Reals , 1976, J. Symb. Log..

[7]  Dana S. Scott,et al.  Lectures on a Mathematical Theory of Computation , 1982 .

[8]  William J. Collins,et al.  Discontinuities of Provably Correct Operators on the Provably Recursive Real Numbers , 1983, J. Symb. Log..

[9]  J. Helm On Effectively Computable Operators , 1971 .

[10]  Yu. L. Ershov Computable functionals of finite types , 1972 .

[11]  Michael Beeson,et al.  The nonderivability in intuitionistic formal systems of theorems on the continuity of effective operations , 1975, Journal of Symbolic Logic.

[12]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[13]  Klaus Weihrauch,et al.  Computability on Computable Metric Spaces , 1993, Theor. Comput. Sci..

[14]  Yu. L. Ershov,et al.  The theory of A-spaces , 1973 .

[15]  Robert L. Constable,et al.  Computability concepts for programming language semantics , 1975, Theor. Comput. Sci..

[16]  Paul R. Young,et al.  AN EFFECTIVE OPERATOR, CONTINUOUS BUT NOT PARTIAL RECURSIVE , 1968 .

[17]  Peter Hertling Effectivity and Effective Continuity of Functions between Computable Metric Spaces , 1996, DMTCS.

[18]  Dieter Spreen Representations versus Numberings: On Two Computability Notions , 1996, DMTCS.

[19]  Marian Boykan Pour-El A Comparison of Five “Computable” Operators† , 1960 .

[20]  P. Odifreddi Classical recursion theory , 1989 .

[21]  Dieter Spreen,et al.  On domains witnessing increase in information , 2000 .

[22]  Andre Scedrov,et al.  Church's Thesis, Continuity, and Set Theory , 1984, J. Symb. Log..

[23]  J. Ersov Theorie der Numerierungen II , 1973 .

[24]  Ju. L. Ers Theorie Der Numerierungen III , 1977, Math. Log. Q..

[25]  Kenneth W. Regan,et al.  Computability , 2022, Algorithms and Theory of Computation Handbook.

[26]  Benjamin Franklin Wells,et al.  The Mathematics of Algebraic Systems, Collected Papers 1936-1967 , 1975 .

[27]  Michael Beeson,et al.  Continuity and comprehension in intuitionistic formal systems , 1977 .

[28]  Y. Moschovakis Review: G. Kriesel, D. Lacombe, J. Shoenfield, Effective Operations and Partial Recursive Functionals; G. Kreisel, D. Lacombe, J. R. Shoenfield, Partial Recursive Functionals and Effective Operations , 1966 .

[29]  P. M. Cohn,et al.  THE METAMATHEMATICS OF ALGEBRAIC SYSTEMS , 1972 .

[30]  Alberto Bertoni,et al.  The Complexity of Computing the Number of Strings of Given Length in Context-Free Languages , 1991, Theor. Comput. Sci..

[31]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[32]  Dieter Spreen On Some Decision Problems in Programming , 1995, Inf. Comput..

[33]  J. U. L. Ersov,et al.  Theorie der Numerierungen II , 1975, Math. Log. Q..

[34]  P. Young,et al.  Effective operators in a topological setting , 1984 .