Strengthening and Toughening Mechanisms of Ceramic Nanocomposites

Crack-tip bridging by particles is considered to be one of the primary strengthening mechanisms of ceramic nanocomposites. Small, brittle particulate inclusions have been shown to cause crack-tip bridging at short distances behind the crack tip. This mechanism leads to modest toughness but a very steep R-curve, and it is the latter that produces the very high fracture strength of the ceramic nanocomposite. Localized high residual stress around the particles (particularly in the case of silicon carbide-alumina material) causes the strengthening mechanism to operate effectively, even at a small volume fraction of 5%. The present study predicts the magnitude of the toughness increase and the extent of R-curve behavior for the nanocomposite.

[1]  M. Harmer,et al.  Crack healing and stress relaxation in Al2O3-SiC nanocomposites , 1995 .

[2]  S. Jiao,et al.  Processing and properties of Al2O3/SiC nanocomposites , 1995 .

[3]  K. Niihara,et al.  Tensile Creep Behavior of Alumina/Silicon Carbide Nanocomposite , 1994 .

[4]  B. Lawn,et al.  Model for Toughness Curves in Two‐Phase Ceramics: I, Basic Fracture Mechanics , 1993 .

[5]  R. Cook,et al.  Mechanical behavior of alumina-silicon carbide «Nanocomposites» , 1993 .

[6]  K. Niihara New Design Concept of Structural Ceramics , 1991 .

[7]  R. M. Cannon,et al.  Dihedral Angles in Magnesia and Alumina: Distributions from Surface Thermal Grooves , 1990 .

[8]  B. Lawn,et al.  Role of interfacial grain-bridging sliding friction in the crack-resistance and strength properties of nontransforming ceramics , 1989 .

[9]  M. Taya,et al.  Toughening of a particulate-reinforced/ceramic-matrix composite. Technical report , 1989 .

[10]  B. Lawn,et al.  Flaw tolerance in ceramics with rising crack resistance characteristics , 1989 .

[11]  F. Erdogan,et al.  Toughening of Ceramics through Crack Bridging by Ductile Particles , 1989 .

[12]  R. Bradt,et al.  The Crack Growth Resistance Curve of Non-Phase-Transforming Ceramics , 1988 .

[13]  K. Eguchi,et al.  Some Roles of MgO and TiO2 in Densification of a Sinterable Alumina , 1987 .

[14]  V. Krstić On the fracture of brittle-matrix/ductile-particle composites , 1983 .

[15]  John M. Liu,et al.  Grain boundary fracture in tungsten bi-crystals , 1982 .

[16]  J. Blendell,et al.  Measurement of Stress Due to Thermal Expansion Anisotropy in Al2O3 , 1982 .

[17]  P. Nicholson,et al.  Toughening of Glasses by Metallic Particles , 1981 .

[18]  A. Evans,et al.  Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System , 1980 .

[19]  R. Asaro Adsorption-induced losses in interfacial cohesion , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[20]  J. Hirth Adsorption at grain boundaries and its effect on decohesion , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[21]  J. Embury,et al.  Fracture of a brittle particulate composite , 1979 .

[22]  J. Embury,et al.  Fracture of a brittle particulate composite , 1979 .

[23]  V. Vítek,et al.  The effects of segregated impurities on intergranular fracture energy , 1979 .

[24]  Anil V. Virkar,et al.  Fracture Behavior of ZrO2-Zr Composites , 1977 .

[25]  J. Embury,et al.  Crack shape studies in brittle porous materials , 1977 .

[26]  M. Toya,et al.  A crack along the interface of a circular inclusion embedded in an infinite solid , 1974 .

[27]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[28]  Anthony G. Evans,et al.  The strength of brittle materials containing second phase dispersions , 1972 .

[29]  F. Lange Fracture Energy and Strength Behavior of a Sodium Borosilicate Glass‐Al2O3 Composite System , 1971 .

[30]  F. F. Lange,et al.  The interaction of a crack front with a second-phase dispersion , 1970 .

[31]  S. Wiederhorn Fracture of Sapphire , 1969 .

[32]  A. J. Forty,et al.  The interaction of cleavage cracks with inhomogeneities in sodium chloride crystals , 1965 .

[33]  Jorgen Selsing,et al.  Internal Stresses in Ceramics , 1961 .

[34]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[35]  K. Niihara,et al.  Particle/Matrix Interface and Its Role in Creep Inhibition in Alumina/Silicon Carbide Nanocomposites , 1996 .

[36]  D. Brandon,et al.  Effect of SiC Submicrometer Particle Size and Content on Fracture Toughness of Alumina–SiC “Nanocomposites” , 1995 .

[37]  Keisuke Tanaka,et al.  Strengthening Mechanism in Al2O3/SiC Particulate Composites , 1994 .

[38]  K. Niihara,et al.  High-temperature creep and deformation behaviour of Al2O3/SiC nanocomposites , 1993 .

[39]  K. Niihara New design concept of structural ceramics―ceramic nanocomposites , 1991 .

[40]  K. Niihara,et al.  Strengthening and toughening mechanisms in nanocomposite ceramics , 1991 .

[41]  A. Evans,et al.  Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics , 1988 .

[42]  D. J. Green Fracture Toughness Predictions for Crack Bowing in Brittle Particulate Composites , 1983 .

[43]  A. Revcolevschi,et al.  Relative Energies of 〈011〉 Tilt Boundaries inNiO , 1982 .

[44]  J. Rice,et al.  Elementary engineering fracture mechanics , 1974 .

[45]  R. M. Spriggs,et al.  Strength-Grain Size-Porosity Relations in Alumina , 1965 .

[46]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .