Electrical Resistivity and Morphology of Sn 1− x /Si x Core–Shell Cluster Network Prepared by a Plasma-Gas-Condensation Cluster Source

Sn11x/Six cluster assembled films have been prepared by a plasma-gas-condensation cluster beam deposition apparatus. Transmission electron microscope images indicate that individual clusters have core­shell morphology, where Sn cores are covered by Si shells. Temperature dependence of electrical resistivity exhibits a metallic behavior and a superconducting transition at low temperature for 0 0.29. These results indicate that the cluster network and/or core­shell morphology Sn11x/Six cluster assembled films changes with x. [doi:10.2320/matertrans.M2012232]

[1]  Kazuhisa Sato,et al.  Core-Shell Formation and Juxtaposition in Fe and Si Hybrid Clusters Prepared by Controlling the Collision Stages , 2010 .

[2]  T. Hihara,et al.  Fe–Si core/Si-shell clusters prepared by double glow discharge sources , 2010 .

[3]  D. Peng,et al.  Morphology and magnetic properties of Fe and Al nanocomposites prepared with single and double-glow-discharge sources , 2008 .

[4]  D. Peng,et al.  Magnetic and electrical properties of Fe/Si core-shell cluster assemblies prepared with double-glow-discharge sources , 2005 .

[5]  D. Peng,et al.  Composite deposition of Co and Si clusters by rf/dc plasma-gas-codensation , 2003 .

[6]  D. Peng,et al.  Magnetic properties of monodispersed Co/CoO clusters , 2000 .

[7]  D. Peng,et al.  Compositional partition in Ag-Nb alloy clusters produced by a plasma-gas-condensation cluster source , 1999 .

[8]  D. Peng,et al.  Characteristic transport properties of CoO-coated monodispersive Co cluster assemblies , 1999 .

[9]  T. Odagaki,et al.  Percolation in correlated systems , 1999 .

[10]  T. Hihara,et al.  Formation and size control of a Ni cluster by plasma gas condensation , 1998 .

[11]  J. P. Perez,et al.  FROM FREE CLUSTERS TO CLUSTER-ASSEMBLED MATERIALS , 1995 .

[12]  T. Hihara,et al.  A Comparative High-Resolution Electron Microscope Study of Ag Clusters Produced by a Sputter-Gas Aggregation and Ion Cluster Beam Technique , 1994 .

[13]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[14]  Hellmut Haberland,et al.  Thin films from energetic cluster impact: A feasibility study , 1992 .

[15]  F. D. Boer Cohesion in Metals: Transition Metal Alloys , 1989 .

[16]  S. Yatsuya,et al.  A New Technique for the Formation of Ultrafine Particles by Sputtering , 1986 .

[17]  J. Honig,et al.  Electrical properties of the ( V 1 − x Cr x ) 2 O 3 system , 1980 .

[18]  J. Bray,et al.  Model for an Exciton Mechanism of Superconductivity , 1973 .

[19]  W. Hume-rothery,et al.  The lattice spacings of solid solutions of different elements in aluminium , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .