Clustering in a Continuum Percolation Model

We study properties of the clusters of a system of fully penetrable balls, a model formed by centering equal-sized balls on the points of a Poisson process. We develop a formal expression for the density of connected clusters of k balls (called k-mers) in the system, first rigorously derived by Penrose [15]. Our integral expressions are free of inherent redundancies, making them more tractable for numerical evaluation. We also derive and evaluate an integral expression for the average volume of k-mers.

[1]  J. Given,et al.  The continuum Potts model and continuum percolation , 1989 .

[2]  M. Penrose On a continuum percolation model , 1991, Advances in Applied Probability.

[3]  Y. Chiew,et al.  Percolation behaviour of permeable and of adhesive spheres , 1983 .

[4]  G. Stell Continuum theory of percolation and association , 1996 .

[5]  J. Seaman Introduction to the theory of coverage processes , 1990 .

[6]  Salvatore Torquato,et al.  Two‐point cluster function for continuum percolation , 1988 .

[7]  E. N. Gilbert,et al.  Random Plane Networks , 1961 .

[8]  R. Zwanzig,et al.  Series expansions in a continuum percolation problem , 1977 .

[9]  J. Quintanilla,et al.  Clustering Properties of D-dimensional Overlapping Spheres Typeset Using Revt E X 1 , 1996 .

[10]  S. Torquato,et al.  Comparison of analytic and numerical results for the mean cluster density in continuum percolation , 1990 .

[11]  S. Torquato,et al.  Exact determination of the two-point cluster function for one-dimensional continuum percolation , 1995 .

[12]  Salvatore Torquato,et al.  Pair connectedness and mean cluster size for continuum‐percolation models: Computer‐simulation results , 1988 .

[13]  Santos,et al.  Radial distribution function for hard spheres. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[14]  M. J. Powell,et al.  The volume internal to three intersecting hard spheres , 1964 .

[15]  Karl W. Kratky,et al.  The area of intersection of n equal circular disks , 1978 .

[16]  John S. Rowlinson,et al.  The triplet distribution function in a fluid of hard spheres , 1963 .

[17]  E. T. Gawlinski,et al.  Continuum percolation in two dimensions: Monte Carlo tests of scaling and universality for non-interacting discs , 1981 .

[18]  S. A. Roach,et al.  The Theory of Random Clumping , 1968 .

[19]  Mathew D. Penrose Continuum percolation and Euclidean minimal spanning trees in high dimensions , 1996 .

[20]  Karl W. Kratky,et al.  Intersecting disks (and spheres) and statistical mechanics. I. Mathematical basis , 1981 .

[21]  S. Prager,et al.  Viscous Flow through Porous Media. II. Approximate Three‐Point Correlation Function , 1962 .

[22]  R. M. Stratt,et al.  A theory of percolation in liquids , 1986 .

[23]  G. Stell Exact equation for the pair-connectedness function , 1984 .

[24]  George Stell,et al.  Continuum theory of percolation , 1996 .