Addressing Missing Data Mechanism Uncertainty using Multiple-Model Multiple Imputation: Application to a Longitudinal Clinical Trial.

We present a framework for generating multiple imputations for continuous data when the missing data mechanism is unknown. Imputations are generated from more than one imputation model in order to incorporate uncertainty regarding the missing data mechanism. Parameter estimates based on the different imputation models are combined using rules for nested multiple imputation. Through the use of simulation, we investigate the impact of missing data mechanism uncertainty on post-imputation inferences and show that incorporating this uncertainty can increase the coverage of parameter estimates. We apply our method to a longitudinal clinical trial of low-income women with depression where nonignorably missing data were a concern. We show that different assumptions regarding the missing data mechanism can have a substantial impact on inferences. Our method provides a simple approach for formalizing subjective notions regarding nonresponse so that they can be easily stated, communicated, and compared.

[1]  Juned Siddique,et al.  Treating depression in predominantly low-income young minority women: a randomized controlled trial. , 2003, JAMA.

[2]  J. Schafer,et al.  Analysis of Incomplete Multivariate Data (Monographs on Statistics and Applied Probability, No. 72) , 2000 .

[3]  D B Rubin,et al.  Multiple imputation in health-care databases: an overview and some applications. , 1991, Statistics in medicine.

[4]  D. Schroeder,et al.  Missing data assumptions and methods in a smoking cessation study. , 2010, Addiction.

[5]  H. Boshuizen,et al.  Multiple imputation of missing blood pressure covariates in survival analysis. , 1999, Statistics in medicine.

[6]  A. Winsor Sampling techniques. , 2000, Nursing times.

[7]  J. Robins,et al.  Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models , 1999 .

[8]  James R Carpenter,et al.  Sensitivity analysis after multiple imputation under missing at random: a weighting approach , 2007, Statistical methods in medical research.

[9]  Russell V. Lenth,et al.  Statistical Analysis With Missing Data (2nd ed.) (Book) , 2004 .

[10]  Donald B. Rubin,et al.  Nested multiple imputation of NMES via partially incompatible MCMC , 2003 .

[11]  Chuanhai Liu,et al.  Missing data imputation using the multivariate t distribution , 1995 .

[12]  Stef van Buuren,et al.  MICE: Multivariate Imputation by Chained Equations in R , 2011 .

[13]  J. Schafer,et al.  A comparison of inclusive and restrictive strategies in modern missing data procedures. , 2001, Psychological methods.

[14]  D. Rubin Formalizing Subjective Notions about the Effect of Nonrespondents in Sample Surveys , 1977 .

[15]  D. Rubin,et al.  Hierarchical logistic regression models for imputation of unresolved enumeration status in undercount estimation. , 1993, Journal of the American Statistical Association.

[16]  A. Rush,et al.  What predicts attrition in second step medication treatments for depression? A STARD report , 2008 .

[17]  Jeremy MG Taylor,et al.  Partially parametric techniques for multiple imputation , 1996 .

[18]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[19]  Michael J. Daniels,et al.  Missing data in longitudinal studies , 2008 .

[20]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[21]  J. Schafer,et al.  Missing data: our view of the state of the art. , 2002, Psychological methods.

[22]  Geert Molenberghs,et al.  Sensitivity analysis for incomplete contingency tables: the Slovenian plebiscite case , 2001 .

[23]  S. van Buuren Multiple imputation of discrete and continuous data by fully conditional specification , 2007, Statistical methods in medical research.

[24]  Ofer Harel,et al.  Strategies for Data Analysis with Two Types of Missing Values , 2009 .

[25]  D. Rubin,et al.  Handling “Don't Know” Survey Responses: The Case of the Slovenian Plebiscite , 1995 .

[26]  I. Blackburn,et al.  The Efficacy of Cognitive Therapy in Depression: A Treatment Trial Using Cognitive Therapy and Pharmacotherapy, each Alone and in Combination , 1981, British Journal of Psychiatry.

[27]  J. Kadane,et al.  Experiences in elicitation , 1998 .

[28]  T. Raghunathan,et al.  A Bayesian Approach for Clustered Longitudinal Ordinal Outcome With Nonignorable Missing Data , 2006 .

[29]  Juned Siddique,et al.  Using an Approximate Bayesian Bootstrap to multiply impute nonignorable missing data , 2008, Comput. Stat. Data Anal..

[30]  Thomas R Belin,et al.  Multiple imputation using an iterative hot‐deck with distance‐based donor selection , 2008, Statistics in medicine.

[31]  Joseph G. Ibrahim,et al.  Missing data methods in longitudinal studies: a review , 2009 .

[32]  Jonathan J. Forster,et al.  Model‐based inference for categorical survey data subject to non‐ignorable non‐response , 1998 .

[33]  Ofer Harel,et al.  Inferences on missing information under multiple imputation and two-stage multiple imputation , 2007 .

[34]  Geert Molenberghs,et al.  Strategies to fit pattern-mixture models. , 2002, Biostatistics.

[35]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[36]  Susan M. Paddock,et al.  Subjective prior distributions for modeling longitudinal continuous outcomes with non‐ignorable dropout , 2009, Statistics in medicine.

[37]  Geert Molenberghs,et al.  Ignorance and uncertainty regions as inferential tools in a sensitivity analysis , 2006 .

[38]  O. Harel,et al.  Inferences on the Outfluence – How do Missing Values Impact Your Analysis? , 2009 .

[39]  Stef van Buuren,et al.  Multiple imputation of discrete and continuous data by fully conditional specification , 2007 .

[40]  M P Becker,et al.  A multiple imputation strategy for incomplete longitudinal data , 2001, Statistics in medicine.

[41]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[42]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data , 1988 .

[43]  Geert Molenberghs,et al.  Sensitivity Analysis of Continuous Incomplete Longitudinal Outcomes , 2003 .

[44]  Joseph L Schafer,et al.  On the performance of random‐coefficient pattern‐mixture models for non‐ignorable drop‐out , 2003, Statistics in medicine.

[45]  Ofer Harel,et al.  Outfluence - The impact of missing values , 2008, Model. Assist. Stat. Appl..

[46]  I. White,et al.  Eliciting and using expert opinions about dropout bias in randomized controlled trials , 2007, Clinical trials.

[47]  William G. Cochran,et al.  Sampling Techniques, 3rd Edition , 1963 .

[48]  John Van Hoewyk,et al.  A multivariate technique for multiply imputing missing values using a sequence of regression models , 2001 .

[49]  S D Imber,et al.  National Institute of Mental Health Treatment of Depression Collaborative Research Program. General effectiveness of treatments. , 1989, Archives of general psychiatry.

[50]  Joseph L Schafer,et al.  Analysis of Incomplete Multivariate Data , 1997 .