On the Spatial and Temporal Accuracy of Overset Grid Methods for Moving Body Problems

A study of numerical attributes peculiar to an overset grid approach to unsteady aerodynamics prediction is presented. Attention is focused on the effect of spatial error associated with interpolation of intergrid boundary conditions and temporal error associated with explicit update of intergrid boundary points on overall solution accuracy. A set of numerical experiments are used to verify whether or not the use of simple interpolation for intergrid boundary conditions degrades the formal accuracy of a conventional second-order flow solver, and to quantify the error associated with explicit updating of intergrid boundary points. Test conditions correspond to the transonic regime. The validity of the numerical results presented here are established by comparison with existing numerical results of documented accuracy, and by direct comparison with experimental results.