Integrable Evolution Equations on Associative Algebras

Abstract:This paper surveys the classification of integrable evolution equations whose field variables take values in an associative algebra, which includes matrix, Clifford, and group algebra valued systems. A variety of new examples of integrable systems possessing higher order symmetries are presented. Symmetry reductions lead to an associative algebra-valued version of the Painlevé transcendent equations. The basic theory of Hamiltonian structures for associative algebra-valued systems is developed and the biHamiltonian structures for several examples are found.

[1]  S. I. Svinolupov On the analogues of the Burgers equation , 1989 .

[2]  P. Olver,et al.  HAMLTONIAN PERTURBATION THEORY AND WATER WAVES , 1984 .

[3]  A. Crumeyrolle,et al.  Orthogonal and Symplectic Cli ord Algebras , 1990 .

[4]  E. V. Ferapontov,et al.  Differential geometry of nonlocal Hamiltonian operators of hydrodynamic type , 1991 .

[5]  Alexey Borisovich Shabat,et al.  The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems , 1987 .

[6]  S. I. Svinolupov Generalized Schrödinger equations and Jordan pairs , 1992 .

[7]  A. Fordy,et al.  Generalised KdV and MKdV equations associated with symmetric spaces , 1987 .

[8]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[9]  V. Sokolov On the symmetries of evolution equations , 1988 .

[10]  A. Fordy,et al.  Coupled KdV equations with multi-Hamiltonian structures , 1987 .

[11]  Athanassios S. Fokas,et al.  A symmetry approach to exactly solvable evolution equations , 1980 .

[12]  S. I. Svinolupov Jordan algebras and integrable systems , 1993 .

[13]  Helmut Röhrl Algebras and differential equations , 1977 .

[14]  P. Olver,et al.  Hamiltonian structures for systems of hyperbolic conservation laws , 1988 .

[15]  Alexey Borisovich Shabat,et al.  Evolutionary equations with nontrivial Lie - Bäcklund group , 1980 .

[16]  Deformations of nonassociative algebras and integrable differential equations , 1995 .

[17]  S. Walcher Algebras and differential equations , 1991 .

[18]  Alexey Borisovich Shabat,et al.  KLEIN-GORDON EQUATIONS WITH A NONTRIVIAL GROUP , 1979 .

[19]  E. Ferapontov,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: Non-local Hamiltonian operators of hydrodynamic type related to metrics of constant curvature , 1990 .

[20]  B. Dubrovin,et al.  Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory , 1989 .

[21]  P. Olver,et al.  The Connection between Partial Differential Equations Soluble by Inverse Scattering and Ordinary Differential Equations of Painlevé Type , 1983 .

[22]  Peter J. Olver,et al.  Evolution equations possessing infinitely many symmetries , 1977 .

[23]  Allan P. Fordy,et al.  Nonlinear Schrödinger equations and simple Lie algebras , 1983 .

[24]  C. Curtis,et al.  Representation theory of finite groups and associated algebras , 1962 .

[25]  N. Jacobson Structure and Representations of Jordan Algebras , 1968 .

[26]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[27]  E. L. Ince Ordinary differential equations , 1927 .

[28]  B. Dubrovin,et al.  Hamiltonian formalism of one-dimensional systems of hydrodynamic type , 1983 .

[29]  E. Khruslov,et al.  Matrix generalisation of the modified Korteweg-de Vries equation , 1990 .

[30]  A. Mikhailov,et al.  Extension of the module of invertible transformations. Classification of integrable systems , 1988 .

[31]  V. Sokolov,et al.  The Symmetry Approach to Classification of Integrable Equations , 1991 .

[32]  S. Sawada,et al.  A Method for Finding N-Soliton Solutions of the KdV and KdV-Like Equation , 1974 .

[33]  A. Fordy Derivative nonlinear Schrodinger equations and Hermitian symmetric spaces , 1984 .

[34]  P. Olver,et al.  Existence and Nonexistence of Solitary Wave Solutions to Higher-Order Model Evolution Equations , 1992 .

[35]  S. I. Svinolupov,et al.  Vector-matrix generalizations of classical integrable equations , 1994 .

[36]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[37]  Jin-quan Chen Group Representation Theory For Physicists , 1989 .

[38]  V. V. Sokolov,et al.  Lie algebras and equations of Korteweg-de Vries type , 1985 .

[39]  Metin Gürses,et al.  Degenerate Svinolupov KdV systems , 1996 .

[40]  David J. Kaup,et al.  On the Inverse Scattering Problem for Cubic Eigenvalue Problems of the Class ψxxx + 6Qψx + 6Rψ = λψ , 1980 .

[41]  V. Marchenko Nonlinear Equations and Operator Algebras , 1987 .