Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms

Turbulence characteristics of the wind farm inflow have a significant impact on the energy production and the lifetime of a wind farm. The common approach is to use the meteorological mast measurements to estimate the turbulence intensity (TI) but they are not always available and the turbulence varies over the extent of the wind farm. This paper describes a method to estimate the TI at individual turbine locations by using the rotor effective wind speed calculated via high frequency turbine data.

[1]  Morten Nielsen,et al.  Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm , 2007 .

[2]  P. W. Chan,et al.  Atmospheric turbulence in complex terrain: Verifying numerical model results with observations by remote-sensing instruments , 2009 .

[3]  Leo E. Jensen,et al.  The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm , 2010 .

[4]  M. Nielsen,et al.  Linearised CFD Models for Wakes , 2011 .

[5]  Siegfried Heier,et al.  Grid Integration of Wind Energy Conversion Systems , 1998 .

[6]  J. Michalakes,et al.  A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics , 2012 .

[7]  Rebecca J. Barthelmie,et al.  Ten years of meteorological measurements for offshore wind farms , 2005 .

[8]  S. Frandsen Turbulence and turbulence-generated structural loading in wind turbine clusters , 2007 .

[9]  Donald H. Lenschow,et al.  Uncorrelated Noise in Turbulence Measurements , 1985 .

[10]  L. J. Vermeera,et al.  Wind turbine wake aerodynamics , 2003 .

[11]  S. Markkilde Petersen Experimental investigation of gear box duration loadings on stall and pitch controlled wind turbines , 1995 .

[12]  Francesco Castellani,et al.  IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 1: Flow-over-terrain models , 2014 .

[13]  Helge Madsen Aagaard,et al.  Dynamic wake meandering modeling , 2007 .

[14]  Paul van der Laan,et al.  Wind turbine wake models developed at the Technical University of Denmark: A review , 2016 .

[15]  D. Lenschow,et al.  How long is long enough when measuring fluxes and other turbulence statistics , 1994 .

[16]  J. F. Ainslie,et al.  CALCULATING THE FLOWFIELD IN THE WAKE OF WIND TURBINES , 1988 .

[17]  Martin Gallagher,et al.  Short-term measurements of airflow and turbulence in two street canyons in Manchester , 2004 .

[18]  Niels N. Sørensen,et al.  Characterization of the unsteady flow in the nacelle region of a modern wind turbine , 2011 .

[19]  Niels Kjølstad Poulsen,et al.  Wind Speed Estimation and Parametrization of Wake Models for Downregulated Offshore Wind Farms within the scope of PossPOW Project , 2014 .

[20]  Francesco Castellani,et al.  IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models , 2014 .

[21]  Gunner Chr. Larsen,et al.  A simple stationary semi-analytical wake model , 2009 .

[22]  Rebecca J. Barthelmie,et al.  Review of Methodologies for Offshore Wind Resource Assessment in European Seas , 2008 .

[23]  N. Troldborg,et al.  An improved k‐ ϵ model applied to a wind turbine wake in atmospheric turbulence , 2015 .