Una herramienta para el seguimiento del profesorado universitario en Entornos Virtuales de Aprendizaje

Learning Management Systems’ (LMS) interaction mechanisms are mainly focused on the improvement of students’ experiences and academic results. However, special attention should also be given to the interaction between these LMS and other actors involved in the educational process. This paper specifically targets the interaction of degree coordinators with LMS when monitoring lecturers’ performance, especially in an online mode. The methodology is guided by the following three objectives: (1) analysis of the limitations of monitoring lecturers in current LMS; (2) development of software program to overcome such limitations; and (3) empirical evaluation of the proposed program. The results show that this type of tool helps coordinators to intuitively and efficiently analyze the status of the subjects taught in their degree programs.

[1]  Jan M. Pawlowski,et al.  The Quality Adaptation Model: Adaptation and Adoption of the Quality Standard ISO/IEC 19796-1 for Learning, Education, and Training , 2007, J. Educ. Technol. Soc..

[2]  Bonifacio Martín Galán,et al.  LA EVALUACIÓN DE LA FORMACIÓN UNIVERSITARIA SEMIPRESENCIAL Y EN LÍNEA EN EL CONTEXTO DEL EEES MEDIANTE EL USO DE LOS INFORMES DE ACTIVIDAD DE LA PLATAFORMA MOODLE , 2012 .

[3]  Roberto Fernández-Llera,et al.  Sobre la evaluación del profesorado universitario (especial referencia a ciencias económicas y jurídicas) , 2012 .

[4]  Francisco J. García-Peñalvo,et al.  Development of e-Learning Solutions: Different Approaches, a Common Mission , 2014, IEEE Revista Iberoamericana de Tecnologias del Aprendizaje.

[5]  Xin Li,et al.  E-Learning with visual analytics , 2015, 2015 IEEE Conference on e-Learning, e-Management and e-Services (IC3e).

[6]  Hangjung Zo,et al.  Critical success factors for e-learning in developing countries: A comparative analysis between ICT experts and faculty , 2012, Comput. Educ..

[7]  Paul R. Havig,et al.  A human cognition framework for information visualization , 2014, Comput. Graph..

[8]  Mohammad Dastbaz,et al.  Adaptable, personalised e-learning incorporating learning styles , 2010 .

[9]  Mike Levy,et al.  Creativity and constraint: Understanding teacher beliefs and the use of LMS technologies , 2009 .

[10]  Anouschka van Leeuwen,et al.  Supporting teachers in guiding collaborating students: Effects of learning analytics in CSCL , 2014, Comput. Educ..

[11]  Gohar Feroz Khan,et al.  E-learning Motivation and Educational Portal Acceptance in Developing Countries , 2011, Online Inf. Rev..

[12]  George Siemens,et al.  Penetrating the fog: analytics in learning and education , 2014 .

[13]  Roberto Therón,et al.  Analítica visual en e-learning , 2014 .

[14]  Yannis Psaromiligkos,et al.  Towards Networked Learning Analytics - A concept and a tool , 2006 .

[15]  M.J. Gallego-Arrufat,et al.  Modelo de análisis de metodologías didácticas semipresenciales blended learning en Educación Superior , 2015 .

[16]  Jason Cole,et al.  Using Moodle - teaching with the popular open source course management system , 2007 .

[17]  Hsiao-Chien Tseng,et al.  A case study on learning analytics using Experience API , 2015 .

[18]  José Ramón Hilera González UNE 66181:2008, el primer estándar sobre calidad de la formación virtual , 2008 .

[19]  Rafael A. Calvo,et al.  Minimum Indicators to Assure Quality of LMS-supported Blended Learning , 2007, J. Educ. Technol. Soc..