Insights into colour-tuning of chlorophyll optical response in green plants.

First-principles calculations within the framework of real-space time-dependent density functional theory have been performed for the complete chlorophyll (Chl) network of the light-harvesting complex from green plants, LHC-II. A local-dipole analysis method developed for this work has made possible the studies of the optical response of individual Chl molecules subjected to the influence of the remainder of the chromophore network. The spectra calculated using our real-space TDDFT method agree with previous suggestions that weak interaction with the protein microenvironment should produce only minor changes in the absorption spectrum of Chl chromophores in LHC-II. In addition, relative shifting of Chl absorption energies leads the stromal and lumenal sides of LHC-II to absorb in slightly different parts of the visible spectrum providing greater coverage of the available light frequencies. The site-specific alterations in Chl excitation energies support the existence of intrinsic energy transfer pathways within the LHC-II complex.

[1]  A. Dreuw Influence of geometry relaxation on the energies of the S1 and S2 states of violaxanthin, zeaxanthin, and lutein. , 2006, The journal of physical chemistry. A.

[2]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[3]  Xavier Andrade,et al.  Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. , 2015, Physical chemistry chemical physics : PCCP.

[4]  Kieron Burke,et al.  Double excitations within time-dependent density functional theory linear response. , 2004, The Journal of chemical physics.

[5]  Á. Rubio,et al.  Unraveling the intrinsic color of chlorophyll. , 2015, Angewandte Chemie.

[6]  M. Mimuro,et al.  Photosynthetic hydrogen production , 2010 .

[7]  A. Ruban,et al.  Electronic spectra of structurally deformed lutein. , 2012, The journal of physical chemistry. A.

[8]  A. Ruban,et al.  Modeling of fluorescence quenching by lutein in the plant light-harvesting complex LHCII. , 2013, The journal of physical chemistry. B.

[9]  Daniel B. Turner,et al.  Solar light harvesting by energy transfer: from ecology to coherence , 2012 .

[10]  Báder Principle of stationary action and the definition of a proper open system. , 1994, Physical review. B, Condensed matter.

[11]  C. Legrand,et al.  Comparison of self-interaction-corrections for metal clusters , 2002 .

[12]  J. Ihalainen,et al.  Excitation energy transfer in the LHC-II trimer: a model based on the new 2.72 Å structure , 2006, Photosynthesis Research.

[13]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[14]  Á. Rubio,et al.  octopus: a first-principles tool for excited electron-ion dynamics. , 2003 .

[15]  Matthew P. Johnson,et al.  Natural light harvesting: principles and environmental trends , 2011 .

[16]  James J. P. Stewart,et al.  Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters , 2012, Journal of Molecular Modeling.

[17]  Hohjai Lee,et al.  Coherence Dynamics in Photosynthesis: Protein Protection of Excitonic Coherence , 2007, Science.

[18]  R. Cogdell Carotenoids in photosynthesis , 1978, Photochemistry and photobiology.

[19]  Faraday Discuss , 1985 .

[20]  J. Ihalainen,et al.  Superradiance and Exciton (De)localization in Light-Harvesting Complex II from Green Plants? † , 2002 .

[21]  Serena Berardi,et al.  Molecular artificial photosynthesis. , 2014, Chemical Society reviews.

[22]  Rienk van Grondelle,et al.  Energy transfer in photosynthesis: experimental insights and quantitative models. , 2006, Physical chemistry chemical physics : PCCP.

[23]  A. van Hoek,et al.  Excitation energy transfer and charge separation in photosystem II membranes revisited. , 2006, Biophysical journal.

[24]  D. Siefermann-Harms Carotenoids in photosynthesis. I: Location in photosynthetic membranes and light-harvesting function , 1985 .

[25]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[26]  M. Head‐Gordon,et al.  Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. , 2004, Journal of the American Chemical Society.

[27]  Alessandro Marin,et al.  Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield-Förster picture. , 2011, Physical chemistry chemical physics : PCCP.

[28]  O. Lenz,et al.  Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. , 2009, ACS nano.

[29]  Xavier Andrade,et al.  Time-dependent density-functional theory in massively parallel computer architectures: the octopus project , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  G. Fleming,et al.  Design principles of photosynthetic light-harvesting. , 2012, Faraday discussions.

[31]  Xavier Andrade,et al.  A survey of the parallel performance and accuracy of Poisson solvers for electronic structure calculations , 2012, J. Comput. Chem..

[32]  Patrick Bultinck,et al.  Critical analysis and extension of the Hirshfeld atoms in molecules. , 2007, The Journal of chemical physics.

[33]  V. Sundström,et al.  Ultrafast dynamics of carotenoid excited States-from solution to natural and artificial systems. , 2004, Chemical reviews.

[34]  G. Fleming,et al.  Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. , 2010, Physical chemistry chemical physics : PCCP.

[35]  Zhenfeng Liu,et al.  Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution , 2004, Nature.

[36]  S. Long,et al.  We need winners in the race to increase photosynthesis in rice, whether from conventional breeding, biotechnology or both. , 2014, Plant, cell & environment.

[37]  M. Stockett,et al.  The Soret absorption band of isolated chlorophyll a and b tagged with quaternary ammonium ions. , 2015, Physical chemistry chemical physics : PCCP.

[38]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[39]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[40]  G. Porter,et al.  Concentration quenching in chlorophyll , 1976, Nature.

[41]  S. Searle,et al.  Will energy crop yields meet expectations , 2014 .

[42]  Rochus Schmid,et al.  A general and efficient pseudopotential Fourier filtering scheme for real space methods using mask functions. , 2006, The Journal of chemical physics.

[43]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[44]  G. Fleming,et al.  Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. , 2009, The journal of physical chemistry. B.

[45]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[46]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[47]  R. Clapp Loop currents in chlorophyll a , 1982 .

[48]  W. Thiel,et al.  Carotenoids as a shortcut for chlorophyll Soret-to-Q band energy flow. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[49]  William P. Bricker,et al.  An 'all pigment' model of excitation quenching in LHCII. , 2015, Physical chemistry chemical physics : PCCP.

[50]  J. Foley,et al.  Yield Trends Are Insufficient to Double Global Crop Production by 2050 , 2013, PloS one.

[51]  F. Matthias Bickelhaupt,et al.  Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis , 2004, J. Comput. Chem..

[52]  Joseba Alberdi-Rodriguez,et al.  Memory Optimization for the Octopus Scientific Code , 2015 .

[53]  Ronald E. Wrolstad,et al.  Current Protocols in Food Analytical Chemistry , 2000 .

[54]  David Taniar,et al.  Computational Science and Its Applications – ICCSA 2014 , 2014, Lecture Notes in Computer Science.

[55]  Caroline König,et al.  First-principles calculation of electronic spectra of light-harvesting complex II. , 2011, Physical chemistry chemical physics : PCCP.

[56]  R. Cogdell,et al.  Carotenoids in Photosynthesis , 1996, Photochemistry and photobiology.

[57]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .