New Results - Temporal Logic Modeling of Dynamical Behaviors: First-Order Patterns and Solvers

1.1. Temporal Logic FO-LTL(Rlin) . . . . . . . . . . . . . . . . . . . . 12 1.1.1. Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.1.2. Semantics: Validity Domains of Free Variables . . . . . . . . 13 1.1.3. Generic Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.1.4. Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.1.5. Trace Simplification . . . . . . . . . . . . . . . . . . . . . . . . 17 1.1.6. Continuous Satisfaction Degree in [0,1] . . . . . . . . . . . . 17 1.2. Formula Patterns and Dedicated Solvers . . . . . . . . . . . . . . 19 1.2.1. Temporal Operator Patterns . . . . . . . . . . . . . . . . . . . 19 1.2.2. Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.2.3. Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.2.4. Local Maxima . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.2.5. Monotony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.2.6. Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.2.7. Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.3. Study Case: Coupled Model of the Cell Cycle and the Circadian Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.3.1. Circadian Molecular Clock Model . . . . . . . . . . . . . . . 29 1.3.2. Cell Cycle Model . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.3.3. Coupling of the Cell Cycle with the Circadian Clock through WEE1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.3.4. Successive Peak-to-Peak Distances . . . . . . . . . . . . . . . 32 1.3.5. Oscillations with Precise Phaseshifts and Imprecise Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.3.6. Filtering out Damped Oscillations . . . . . . . . . . . . . . . 35 1.3.7. Phase Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 35

[1]  Franck Delaunay,et al.  The Circadian Clock Component BMAL1 Is a Critical Regulator of p21WAF1/CIP1 Expression and Hepatocyte Proliferation* , 2008, Journal of Biological Chemistry.

[2]  José Meseguer,et al.  Pathway Logic: Symbolic Analysis of Biological Signaling , 2001, Pacific Symposium on Biocomputing.

[3]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[4]  松尾 拓哉 Control mechanism of the circadian clock for timing of cell division in vivo , 2004 .

[5]  Radu Mateescu,et al.  Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli , 2005, ISMB.

[6]  J. Weiss,et al.  Dynamics of the cell cycle: checkpoints, sizers, and timers. , 2003, Biophysical journal.

[7]  Radu Mateescu,et al.  Temporal logic patterns for querying dynamic models of cellular interaction networks , 2008, ECCB.

[8]  François Fages,et al.  A general computational method for robustness analysis with applications to synthetic gene networks , 2009, Bioinform..

[9]  H. D. Jong,et al.  Qualitative simulation of genetic regulatory networks using piecewise-linear models , 2004, Bulletin of mathematical biology.

[10]  Adrien Richard,et al.  Application of formal methods to biological regulatory networks: extending Thomas' asynchronous logical approach with temporal logic. , 2004, Journal of theoretical biology.

[11]  Albert Goldbeter,et al.  Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms , 2012, PLoS Comput. Biol..

[12]  François Fages,et al.  On temporal logic constraint solving for analyzing numerical data time series , 2008, Theor. Comput. Sci..

[13]  François Fages,et al.  BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge , 2006, Bioinform..

[14]  François Fages,et al.  Symbolic Model Checking of Biochemical Networks , 2003, CMSB.

[15]  A. Goldbeter,et al.  Toward a detailed computational model for the mammalian circadian clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Roberto Bagnara,et al.  The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems , 2006, Sci. Comput. Program..

[17]  Divesh Srivastava,et al.  Subsumption and indexing in constraint query languages with linear arithmetic constraints , 1993, Annals of Mathematics and Artificial Intelligence.

[18]  François Fages,et al.  Continuous valuations of temporal logic specifications with applications to parameter optimization and robustness measures , 2011, Theor. Comput. Sci..

[19]  Gregor Gößler,et al.  Efficient parameter search for qualitative models of regulatory networks using symbolic model checking , 2010, Bioinform..

[20]  Andreas Sewing,et al.  Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27Kip1 binding to newly formed complexes , 1997, Oncogene.

[21]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[22]  Felix Naef,et al.  Circadian Gene Expression in Individual Fibroblasts Cell-Autonomous and Self-Sustained Oscillators Pass Time to Daughter Cells , 2004, Cell.

[23]  François Fages,et al.  Competing G protein-coupled receptor kinases balance G protein and β-arrestin signaling , 2012, Molecular systems biology.

[24]  Marco Pistore,et al.  NuSMV 2: An OpenSource Tool for Symbolic Model Checking , 2002, CAV.

[25]  Alberto Policriti,et al.  Model building and model checking for biochemical processes , 2007, Cell Biochemistry and Biophysics.

[26]  Stephan Merz,et al.  Model Checking , 2000 .