Cut-free Display Calculi for Relation Algebras

We extend Belnap's Display Logic to give a cut-free Gentzen-style calculus for relation algebras. The calculus gives many axiomatic extensions of relation algebras by the addition of further structural rules. It also appears to be the first purely prepositional Gentzen-style calculus for relation algebras.

[1]  Roger D. Maddux,et al.  The origin of relation algebras in the development and axiomatization of the calculus of relations , 1991, Stud Logica.

[2]  Roger D. Maddux,et al.  A sequent calculus for relation algebras , 1983, Ann. Pure Appl. Log..

[3]  Heinrich Wansing Strong Cut-elimination in Display Logic , 1995, Reports Math. Log..

[4]  Lew Gordeev Cut Free Formalization of Logic with Finitely Many Variables. Part I , 1994, CSL.

[5]  Jerzy Tiuryn,et al.  Logics of Programs , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[6]  Wolfgang Schönfeld Upper Bounds for Proof-Search in a Sequent Calculus for Relational Equations , 1982, Math. Log. Q..

[7]  Yde Venema,et al.  Many-dimensional Modal Logic , 1991 .

[8]  Matthew Hennessy A Proof System for the First-Order Relational Calculus , 1980, J. Comput. Syst. Sci..

[9]  M. Kracht Power and Weakness of the Modal Display Calculus , 1996 .

[10]  John Staples,et al.  Formalizing a Hierarchical Structure of Practical Mathematical Reasoning , 1993, J. Log. Comput..

[11]  Vaughan R. Pratt,et al.  Dynamic algebras as a well-behaved fragment of relation algebras , 1988, Algebraic Logic and Universal Algebra in Computer Science.

[12]  II. Mathematisches Power and Weakness of the Modal Display Calculus , 1996 .

[13]  Nuel Belnap,et al.  Gupta's rule of revision theory of truth , 1982, J. Philos. Log..

[14]  Heinrich Wansing,et al.  Sequent Calculi for Normal Modal Proposisional Logics , 1994, J. Log. Comput..

[15]  W. W. Wadge,et al.  A Complete Natural Deduction System for the Relational Calculus , 1975 .

[16]  Nuel Belnap,et al.  Display logic , 1982, J. Philos. Log..