Local inhomogeneities resolved by scanning probe techniques and their impact on local 2DEG formation in oxide heterostructures

Lateral inhomogeneities in the formation of two-dimensional electron gases (2DEG) directly influence their electronic properties. Understanding their origin is an important factor for fundamental interpretations, as well as high quality devices. Here, we studied the local formation of the buried 2DEG at LaAlO3/SrTiO3 (LAO/STO) interfaces grown on STO (100) single crystals with partial TiO2 termination, utilizing in situ conductive atomic force microscopy (c-AFM) and scattering-type scanning near-field optical microscopy (s-SNOM). Using substrates with different degrees of chemical surface termination, we can link the resulting interface chemistry to an inhomogeneous 2DEG formation. In conductivity maps recorded by c-AFM, a significant lack of conductivity is observed at topographic features, indicative of a local SrO/AlO2 interface stacking order, while significant local conductivity can be probed in regions showing TiO2/LaO interface stacking order. These results could be corroborated by s-SNOM, showing a similar contrast distribution in the optical signal which can be linked to the local electronic properties of the material. The results are further complemented by low-temperature conductivity measurements, which show an increasing residual resistance at 5 K with increasing portion of insulating SrO-terminated areas. Therefore, we can correlate the macroscopic electrical behavior of our samples to their nanoscopic structure. Using proper parameters, 2DEG mapping can be carried out without any visible alteration of sample properties, proving c-AFM and s-SNOM to be viable and destruction-free techniques for the identification of local 2DEG formation. Furthermore, applying c-AFM and s-SNOM in this manner opens the exciting prospect to link macroscopic low-temperature transport to its nanoscopic origin.

[1]  R. Dittmann,et al.  Stoichiometry and Termination Control of LaAlO3/SrTiO3 Bilayer Interfaces , 2020, Advanced Materials Interfaces.

[2]  R. Dittmann,et al.  Identifying Ionic and Electronic Charge Transfer at Oxide Heterointerfaces , 2020, Advances in Materials.

[3]  R. Dittmann,et al.  Phonon‐Enhanced Near‐Field Spectroscopy to Extract the Local Electronic Properties of Buried 2D Electron Systems in Oxide Heterostructures , 2020, Advanced Functional Materials.

[4]  N. Pryds,et al.  Charge-transfer engineering strategies for tailored ionic conductivity at oxide interfaces , 2020 .

[5]  R. Schneider,et al.  Influence of the vicinal substrate miscut on the anisotropic two-dimensional electronic transport in Al2O3–SrTiO3 heterostructures , 2020, 2008.11963.

[6]  M. Moors,et al.  Scanning Probe Microscopy , 2020, Japanese Journal of Applied Physics.

[7]  Ricardo Garcia Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. , 2020, Chemical Society reviews.

[8]  Shu Han Chen,et al.  Subsurface chemical nanoidentification by nano-FTIR spectroscopy , 2020, Nature Communications.

[9]  J. Levy,et al.  Pascal conductance series in ballistic one-dimensional LaAlO3/SrTiO3 channels , 2019, Science.

[10]  R. Dittmann,et al.  SrTiO3 termination control: a method to tailor the oxygen exchange kinetics , 2019, Materials Research Letters.

[11]  Weiwei Luo,et al.  High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces , 2019, Nature Communications.

[12]  Zhuoyu Chen,et al.  Strain-tunable magnetism at oxide domain walls , 2019, Nature Physics.

[13]  T. Ishihara,et al.  Interaction of SrO-terminated SrTiO3 surface with oxygen, carbon dioxide, and water , 2018 .

[14]  A. Dinia,et al.  Guideline to atomically flat TiO2-terminated SrTiO3(001) surfaces , 2018, Surface Science.

[15]  R. Dittmann,et al.  Nanospectroscopy of Infrared Phonon Resonance Enables Local Quantification of Electronic Properties in Doped SrTiO3 Ceramics , 2018, Advanced Functional Materials.

[16]  R. Dittmann,et al.  UV radiation enhanced oxygen vacancy formation caused by the PLD plasma plume , 2018, Scientific Reports.

[17]  E. Tsymbal,et al.  Direct observation of a two-dimensional hole gas at oxide interfaces , 2018, Nature Materials.

[18]  Rainer Waser,et al.  Dynamics of the metal-insulator transition of donor-doped SrTi O 3 , 2016 .

[19]  R. Dittmann,et al.  Defect-control of conventional and anomalous electron transport at complex oxide interfaces , 2016 .

[20]  C. Eom,et al.  Charge Transfer to LaAlO3/SrTiO3 Interfaces Controlled by Surface Water Adsorption and Proton Hopping , 2016 .

[21]  R. Dittmann,et al.  Verification of redox-processes as switching and retention failure mechanisms in Nb:SrTiO3/metal devices. , 2016, Nanoscale.

[22]  R. Dittmann,et al.  Space charges and defect concentration profiles at complex oxide interfaces , 2016 .

[23]  R. Dittmann,et al.  Disentanglement of growth dynamic and thermodynamic effects in LaAlO3/SrTiO3 heterostructures , 2016, Scientific Reports.

[24]  J. Triscone,et al.  Characterization of atomic force microscopy written conducting nanowires at LaAlO3/SrTiO3 interfaces , 2016 .

[25]  J. Fontcuberta,et al.  Instability and Surface Potential Modulation of Self-Patterned (001)SrTiO3 Surfaces , 2015, 1510.03631.

[26]  J. Levy,et al.  LaAlO3 thickness window for electronically controlled magnetism at LaAlO3/SrTiO3 heterointerfaces , 2015 .

[27]  R. Dittmann,et al.  The influence of the local oxygen vacancy concentration on the piezoresponse of strontium titanate thin films. , 2015, Nanoscale.

[28]  Regina Dittmann,et al.  Surface Termination Conversion during SrTiO3 Thin Film Growth Revealed by X-ray Photoelectron Spectroscopy , 2015, Scientific Reports.

[29]  D. Li,et al.  Growth-induced electron mobility enhancement at the LaAlO3/SrTiO3 interface , 2015, 1503.05906.

[30]  Hongkyu Park,et al.  Subsurface nanoimaging by broadband terahertz pulse near-field microscopy. , 2015, Nano letters.

[31]  T. Schäpers,et al.  Nano-optical mapping of permittivity contrasts and electronic properties at the surface and beneath , 2015 .

[32]  H. Hwang,et al.  Spin-dependent transport across Co/LaAlO3/SrTiO3 heterojunctions , 2014 .

[33]  J. Fontcuberta,et al.  Tailored surfaces of perovskite oxide substrates for conducted growth of thin films. , 2014, Chemical Society reviews.

[34]  S. Gerhold,et al.  Stoichiometry-driven switching between surface reconstructions on SrTiO3(001) , 2014, Surface science.

[35]  F. Chiu A Review on Conduction Mechanisms in Dielectric Films , 2014 .

[36]  E. Altman,et al.  Competition between Kondo screening and magnetism at the LaAlO 3 / SrTiO 3 interface , 2013, 1311.4541.

[37]  J. Sulpizio,et al.  Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3. , 2013, Nature materials.

[38]  H. Hwang,et al.  Locally enhanced conductivity due to the tetragonal domain structure in LaAlO3/SrTiO3 heterointerfaces. , 2013, Nature materials.

[39]  A. Ruediger,et al.  Realization of single-termination SrTiO3 (100) surfaces by a microwave-induced hydrothermal process , 2013 .

[40]  J. Maan,et al.  Multi-band conduction behaviour at the interface of LaAlO3/SrTiO3 heterostructures , 2013 .

[41]  J. Levy,et al.  Anomalous high mobility in LaAlO3/SrTiO3 nanowires. , 2012, Nano letters.

[42]  D. R. Strachan,et al.  Preparation of atomically flat SrTiO3 surfaces using a deionized-water leaching and thermal annealing procedure , 2012, 1210.1860.

[43]  V. Laukhin,et al.  Laterally-confined two-dimensional electron gases in self-patterned LaAlO3/SrTiO3 interfaces , 2012, 1401.5633.

[44]  Sergei V. Kalinin,et al.  Probing surface and bulk electrochemical processes on the LaAlO3-SrTiO3 interface. , 2012, ACS nano.

[45]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[46]  H. Hwang,et al.  Critical thickness for ferromagnetism in LaAlO3/SrTiO3 heterostructures , 2012, Nature Communications.

[47]  H. Hwang,et al.  Control of electronic conduction at an oxide heterointerface using surface polar adsorbates. , 2011, Nature communications.

[48]  H. Hwang,et al.  Built-in and induced polarization across LaAlO3/SrTiO3 heterojunctions , 2010, 1005.4257.

[49]  Harald Schneider,et al.  Quantitative determination of the charge carrier concentration of ion implanted silicon by IR-near-field spectroscopy. , 2010, Optics express.

[50]  J. Levy,et al.  “Water-cycle” mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface , 2010, 1009.3303.

[51]  J. Triscone,et al.  Influence of the growth conditions on the LaAIO3/SrTiO3 interface electronic properties , 2010 .

[52]  H. Hwang,et al.  Charge Writing at the LaAlO3/SrTiO3 surface. , 2010, Nano letters.

[53]  J. Mannhart,et al.  Oxide Interfaces—An Opportunity for Electronics , 2010, Science.

[54]  W. Pickett,et al.  Parallel electron-hole bilayer conductivity from electronic interface reconstruction. , 2009, Physical review letters.

[55]  Rainer Waser,et al.  Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells , 2009 .

[56]  J. Fontcuberta,et al.  Atomically flat SrO-terminated SrTiO3(001) substrate , 2009 .

[57]  J. Santiso,et al.  Self-Assembly of SrTiO3(001) Chemical-Terminations: A Route for Oxide-Nanostructure Fabrication by Selective Growth , 2009 .

[58]  Rotraut Merkle,et al.  How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material. , 2008, Angewandte Chemie.

[59]  C. Hellberg,et al.  Supplemental Information for Nanoscale Control of an Interfacial Metal-Insulator Transition at Room Temperature , 2008 .

[60]  K. Bouzehouane,et al.  Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. , 2007, Nature materials.

[61]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[62]  R. Hillenbrand,et al.  Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. , 2007, Optics express.

[63]  Oxide interfaces: watch out for the lack of oxygen. , 2007, Nature materials.

[64]  T. Claeson,et al.  Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface , 2007 .

[65]  W. G. van der Wiel,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[66]  J. Mannhart,et al.  Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures , 2006, Science.

[67]  R. Hillenbrand,et al.  Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling. , 2006, Nano letters.

[68]  T. Claeson,et al.  The role of oxygen vacancies in SrTiO3 at the LaAlO3/SrTiO3 interface , 2006, cond-mat/0603501.

[69]  D. Muller,et al.  Why some interfaces cannot be sharp , 2005, cond-mat/0510491.

[70]  W. Pickett,et al.  Charge localization or itineracy at LaAlO3/SrTiO3 interfaces: Hole polarons, oxygen vacancies, and mobile electrons , 2006 .

[71]  Thomas Taubner,et al.  Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy. , 2005, Optics express.

[72]  J. Kiely,et al.  Simplified tunnelling current calculation for MOS structures with ultra-thin oxides for conductive atomic force microscopy investigations , 2005 .

[73]  R. Moos,et al.  Defect Chemistry of Donor‐Doped and Undoped Strontium Titanate Ceramics between 1000° and 1400°C , 2005 .

[74]  A. Ohtomo,et al.  Controlled Carrier Generation at a Polarity-Discontinued Perovskite Heterointerface , 2004 .

[75]  H. Koinuma,et al.  Preparation of thermally stable TiO2-terminated SrTiO3(100) substrate surfaces , 2004 .

[76]  F. Keilmann,et al.  Near-field microscopy by elastic light scattering from a tip , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[77]  G. Cho,et al.  Investigation of Self-Organized Steps and Terraces in SrTiO3 (001) Substrate Inclined in [110] Direction by Scanning Tunneling Microscopy , 2004 .

[78]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[79]  Y. Ikuhara,et al.  First-principles study on structures and energetics of intrinsic vacancies in SrTiO 3 , 2003 .

[80]  F. Keilmann,et al.  Performance of visible and mid‐infrared scattering‐type near‐field optical microscopes , 2003, Journal of microscopy.

[81]  M. R. Castell Nanostructures on the SrTiO3(001) surface studied by STM , 2002 .

[82]  G. Cho,et al.  Studies of Self-Organized Steps and Terraces in inclined SrTiO3 (001) Substrate by Atomic Force Microscopy , 2001 .

[83]  H. Rogalla,et al.  Surface morphology determined by (001) singel-crystal SrTiO3 termination , 2000 .

[84]  Rainer Waser,et al.  Grain boundaries in dielectric and mixed-conducting ceramics , 2000 .

[85]  F. Keilmann,et al.  Near-field probing of vibrational absorption for chemical microscopy , 1999, Nature.

[86]  H. Rogalla,et al.  Wet etching methods for perovskite substrates , 1999 .

[87]  Horst Rogalla,et al.  Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide , 1998 .

[88]  H. Rogalla,et al.  Influence of the surface treatment on the homoepitaixial growth of SrTiO3 , 1998 .

[89]  A. Shoji,et al.  Control of Step Arrays on Normal and Vicinal SrTiO3(100) Substrates , 1998 .

[90]  R. M. Wolf,et al.  Field-dependent permittivity in metal-semiconducting SrTiO3 Schottky diodes , 1995 .

[91]  H. Koinuma,et al.  Atomic Control of the SrTiO3 Crystal Surface , 1994, Science.

[92]  H. E. Weaver Dielectric properties of single crystals of SrTiO3 at low temperatures , 1959 .