Homography-based visual servo regulation of mobile robots

A monocular camera-based vision system attached to a mobile robot (i.e., the camera-in-hand configuration) is considered in this paper. By comparing corresponding target points of an object from two different camera images, geometric relationships are exploited to derive a transformation that relates the actual position and orientation of the mobile robot to a reference position and orientation. This transformation is used to synthesize a rotation and translation error system from the current position and orientation to the fixed reference position and orientation. Lyapunov-based techniques are used to construct an adaptive estimate to compensate for a constant, unmeasurable depth parameter, and to prove asymptotic regulation of the mobile robot. The contribution of this paper is that Lyapunov techniques are exploited to craft an adaptive controller that enables mobile robot position and orientation regulation despite the lack of an object model and the lack of depth information. Experimental results are provided to illustrate the performance of the controller.

[1]  Mahmut Reyhanoglu,et al.  Nonlinear Control Of Wheeled Mobile Robots , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Darius Burschka,et al.  Vision-based control of mobile robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[3]  Alexander Zelinsky,et al.  Range and pose estimation for visual servoing of a mobile robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[4]  Matthew Turk,et al.  VITS-A Vision System for Autonomous Land Vehicle Navigation , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  François Chaumette,et al.  2 1/2 D Visual Servoing with Respect to Unknown Objects Through a New Estimation Scheme of Camera Displacement , 2000, International Journal of Computer Vision.

[6]  G.D. Hager,et al.  Toward domain-independent navigation: dynamic vision and control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[7]  Man Hyung Lee,et al.  Localization of a mobile robot using images of a moving target , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[8]  Olivier Faugeras,et al.  Motion and Structure from Motion in a piecewise Planar Environment , 1988, Int. J. Pattern Recognit. Artif. Intell..

[9]  Takeo Kanade,et al.  Vision and Navigation for the Carnegie-Mellon Navlab , 1987 .

[10]  Warren E. Dixon,et al.  Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[11]  MalisEzio,et al.  2 1/2 D Visual Servoing with Respect to Unknown Objects Through a New Estimation Scheme of Camera Displacement , 2000 .

[12]  Morgan Kaufmnn Publid 3-D VISION FOR OUTDOOR NAVIGATION BY AN AUTONOMOUS VEHICLE , 1988 .

[13]  Robert E. Mahony,et al.  Visual servoing using linear features for under-actuated rigid body dynamics , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[14]  Kai-Tai Song,et al.  Fast optical flow estimation and its application to real-time obstacle avoidance , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[15]  Warren E. Dixon,et al.  Adaptive homography-based visual servo tracking for a fixed camera configuration with a camera-in-hand extension , 2005, IEEE Transactions on Control Systems Technology.

[16]  D.J. Kriegman,et al.  Stereo vision and navigation in buildings for mobile robots , 1989, IEEE Trans. Robotics Autom..

[17]  Claude Samson,et al.  Velocity and torque feedback control of a nonholonomic cart , 1991 .

[18]  A. Hanson,et al.  Scaled Euclidean 3D reconstruction based on externally uncalibrated cameras , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[19]  Warren E. Dixon,et al.  Adaptive homography-based visual servo tracking , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[20]  François Chaumette,et al.  2d 1/2 visual servoing with respect to a planar object , 1997 .

[21]  Warren E. Dixon,et al.  Homography-based visual servo tracking control of a wheeled mobile robot , 2006, IEEE Transactions on Robotics.

[22]  Ezio Malis Contributions a la modelisation et a la commande en asservissement visuel , 1998 .

[23]  Richard M. Murray,et al.  Non-holonomic control systems: from steering to stabilization with sinusoids , 1995 .

[24]  Vijay Kumar,et al.  Real-time vision-based control of a nonholonomic mobile robot , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[25]  James P. Ostrowski,et al.  Visual servoing with dynamics: control of an unmanned blimp , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[26]  Takeo Kanade,et al.  3-D vision for outdoor navigation by an autonomous vehicle , 1989 .

[27]  S. Hutchinson,et al.  A new hybrid image-based visual servo control scheme , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[28]  E. Malis,et al.  2 1/2 D Visual Servoing , 1999 .

[29]  Norihiko Adachi,et al.  Image-based visual adaptive tracking control of nonholonomic mobile robots , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[30]  François Chaumette,et al.  2 1/2 D visual servoing: a possible solution to improve image-based and position-based visual servoings , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[31]  M.S. de Queiroz,et al.  Homography-based visual servoing of wheeled mobile robots , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[32]  Shree K. Nayar,et al.  A theory of catadioptric image formation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[33]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[34]  Larry S. Davis,et al.  A visual navigation system for autonomous land vehicles , 1987, IEEE J. Robotics Autom..

[35]  Koichiro Deguchi,et al.  Optimal Motion Control for Image-Based Visual Servoing by Decoupling Translation and Rotation , 1999 .

[36]  Richard M. Murray,et al.  Nonholonomic control systems: from steering to stabilization with sinusoids , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[37]  Benedetto Allotta,et al.  Nonlinear controllability and stability analysis of adaptive image-based systems , 2001, IEEE Trans. Robotics Autom..

[38]  Darren M. Dawson,et al.  QMotor 3.0 and the QMotor robotic toolkit: a PC-based control platform , 2002 .

[39]  S. Shankar Sastry,et al.  Vision guided navigation for a nonholonomic mobile robot , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[40]  Warren E. Dixon,et al.  Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).