Combining Preference Elicitation and Search in Multiobjective State-Space Graphs

The aim of this paper is to propose a new approach interweaving preference elicitation and search to solve multiobjective optimization problems. We present an interactive search procedure directed by an aggregation function, possibly non-linear (e.g. an additive disutility function, a Choquet integral), defining the overall cost of solutions. This function is parameterized by weights that are initially unknown. Hence, we insert comparison queries in the search process to obtain useful preference information that will progressively reduce the uncertainty attached to weights. The process terminates by recommending a near-optimal solution ensuring that the gap to optimality is below the desired threshold. Our approach is tested on multiobjective state space search problems and appears to be quite efficient both in terms of number of queries and solution times.

[1]  Journal of the Association for Computing Machinery , 1961, Nature.

[2]  D. Schmeidler Integral representation without additivity , 1986 .

[3]  Meir Kalech,et al.  Reaching a joint decision with minimal elicitation of voter preferences , 2014, Inf. Sci..

[4]  Pallab Dasgupta,et al.  Searching Game Trees under a Partial Order , 1996, Artif. Intell..

[5]  Chelsea C. White,et al.  Multiobjective heuristic search in AND/OR graphs , 1995, IEEE Trans. Syst. Man Cybern..

[6]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[7]  Craig Boutilier,et al.  Constraint-based optimization and utility elicitation using the minimax decision criterion , 2006, Artif. Intell..

[8]  R. Mesiar,et al.  ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.

[9]  Toby Walsh,et al.  Winner determination in voting trees with incomplete preferences and weighted votes , 2011, Autonomous Agents and Multi-Agent Systems.

[10]  P. Fishburn,et al.  Utility theory , 1980, Cognitive Choice Modeling.

[11]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[12]  Chelsea C. White,et al.  Multiobjective A* , 1991, JACM.

[13]  R. Mesiar,et al.  Aggregation Functions: Aggregation on ordinal scales , 2009 .

[14]  Nic Wilson,et al.  Multi-Objective Constraint Optimization with Tradeoffs , 2013, CP.

[15]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Lawrence Mandow,et al.  A New Approach to Multiobjective A* Search , 2005, IJCAI.

[17]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[18]  Jérôme Lang,et al.  Voting procedures with incomplete preferences , 2005 .

[19]  Craig Boutilier,et al.  Multi-Winner Social Choice with Incomplete Preferences , 2013, IJCAI.

[20]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[21]  Ariel D. Procaccia,et al.  Strategyproof Classification with Shared Inputs , 2009, IJCAI.

[22]  Craig Boutilier,et al.  A POMDP formulation of preference elicitation problems , 2002, AAAI/IAAI.

[23]  M. D. Wilkinson,et al.  Management science , 1989, British Dental Journal.

[24]  Pallab Dasgupta,et al.  Utility of Pathmax in Partial Order Heuristic Search , 1995, Inf. Process. Lett..

[25]  Jean-Claude Vansnick,et al.  Cardinal Value Measurement with Macbeth , 2000 .

[26]  J. Schreiber Foundations Of Statistics , 2016 .

[27]  Patrice Perny,et al.  On preference-based search in state space graphs , 2002, AAAI/IAAI.

[28]  Patrice Perny,et al.  Incremental Elicitation of Choquet Capacities for Multicriteria Decision Making , 2014, ECAI.

[29]  Vincent Conitzer,et al.  Determining Possible and Necessary Winners under Common Voting Rules Given Partial Orders , 2008, AAAI.

[30]  P. Fishburn Methods of Estimating Additive Utilities , 1967 .

[31]  Pallab Dasgupta,et al.  Searching Game Trees under a Partial Order , 1996, Artif. Intell..

[32]  Patrice Perny,et al.  Incremental Weight Elicitation for Multiobjective State Space Search , 2015, AAAI.

[33]  Radu Marinescu,et al.  Best-First vs. Depth-First AND/OR Search for Multi-objective Constraint Optimization , 2010, 2010 22nd IEEE International Conference on Tools with Artificial Intelligence.

[34]  Craig Boutilier,et al.  Robust Approximation and Incremental Elicitation in Voting Protocols , 2011, IJCAI.

[35]  Ning Ding,et al.  Voting with partial information: what questions to ask? , 2013, AAMAS.

[36]  Meir Kalech,et al.  Practical voting rules with partial information , 2010, Autonomous Agents and Multi-Agent Systems.

[37]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[38]  James Nga-kwok Liu,et al.  Autonomous agents and multi-agent systems , 1999 .

[39]  Patrick Suppes,et al.  Foundations of measurement , 1971 .

[40]  Andrew P. Sage,et al.  A model of multiattribute decisionmaking and trade-off weight determination under uncertainty , 1984, IEEE Transactions on Systems, Man, and Cybernetics.