Interactive decision support in radiation therapy treatment planning

This paper proposes the use of an interactive decision support system to guide the treatment planning process for external beam radiation therapy. Based on multicriteria optimisation our research treatment planning software CARINA calculates efficient (also called Pareto optimal) treatment plans. These are stored in a database and accessed for evaluation by the treatment planner. The interactive component consists of navigation among the pre-calculated plans using free search, fine search and exact search as well as sensitivity analysis, which extracts dose dependence information for all structures from the plan database. As a result, plan quality is improved by finding advantageous trade-offs in competing treatment plans, trial-and-error is avoided, and effectiveness of treatment planning is increased.

[1]  Eva K. Lee,et al.  Integer Programming Applied to Intensity-Modulated Radiation Therapy Treatment Planning , 2003, Ann. Oper. Res..

[2]  Robert R. Meyer,et al.  Radiation Treatment Planning: Mixed Integer Programming Formulations and Approaches , 2006 .

[3]  M. Alber,et al.  Tools for the analysis of dose optimization: II. Sensitivity analysis , 2002, Physics in medicine and biology.

[4]  D Baltas,et al.  A multiobjective gradient-based dose optimization algorithm for external beam conformal radiotherapy. , 2001, Physics in medicine and biology.

[5]  Horst W. Hamacher,et al.  A multicriteria optimization approach for inverse radiotherapy planning , 2000 .

[6]  J. Oviedo,et al.  Lexicographic optimality in the multiple objective linear programming: The nucleolar solution , 1992 .

[7]  Jianrong Dai,et al.  Optimization of beam orientations and beam weights for conformal radiotherapy using mixed integer programming. , 2003, Physics in medicine and biology.

[8]  Andreas Mahr,et al.  3D Conformal Radiation Therapy: Multimedia Introduction to Methods and Techniques , 2007 .

[9]  I. Rosen,et al.  Implementing IMRT in clinical practice: a joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. , 2004, International journal of radiation oncology, biology, physics.

[10]  M. Alber,et al.  Inverse Treatment Planning for Radiation Therapy Based on Fast Monte Carlo Dose Calculation , 2001 .

[11]  Steve Webb,et al.  Intensity-Modulated Radiation Therapy , 1996, International journal of radiation oncology, biology, physics.

[12]  Fernando Alonso,et al.  Intensity-modulated radiotherapy – a large scale multi-criteria programming problem , 2003, OR Spectr..

[13]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[14]  Panos M. Pardalos,et al.  Optimization in medicine , 2008 .

[15]  S. Apisarnthanarax,et al.  Current Imaging Paradigms in Radiation Oncology , 2005, Radiation research.

[16]  S. Webb The Physics of Conformal Radiotherapy: Advances in Technology , 1997 .

[17]  J. R. Williams,et al.  Radiotherapy physics : in practice , 2000 .

[18]  S. Webb The Physics of Conformal Radiotherapy , 1997 .

[19]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[20]  Lei Xing,et al.  Clinical knowledge-based inverse treatment planning. , 2004, Physics in medicine and biology.

[21]  Greg Bednarz,et al.  Inverse treatment planning using volume-based objective functions. , 2004, Physics in medicine and biology.

[22]  A. Holder Partitioning multiple objective optimal solutions with applications in radiotherapy design , 2006 .

[23]  Michael Lahanas,et al.  Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms. , 2003, Physics in medicine and biology.

[24]  Josef Bille Multicriteria Optimization in Inverse Radiotherapy Planning , 2003 .

[25]  A. Holder Designing Radiotherapy Plans with Elastic Constraints and Interior Point Methods , 2003, Health care management science.

[26]  Frank Verhaegen,et al.  Monte Carlo modelling of external radiotherapy photon beams. , 2003, Physics in medicine and biology.

[27]  F Nüsslin,et al.  A representation of an NTCP function for local complication mechanisms. , 2001, Physics in medicine and biology.

[28]  M. Lehman,et al.  Sequential audits of unacceptable delays in radiation therapy in Australia and New Zealand. , 2004, Australasian radiology.

[29]  Stephen C. Billups,et al.  Minimum-Support Solutions for Radiotherapy Planning , 2003, Ann. Oper. Res..

[30]  A. Brahme,et al.  Optimal dose distribution for eradication of heterogeneous tumours. , 1987, Acta oncologica.

[31]  S. Spirou,et al.  A gradient inverse planning algorithm with dose-volume constraints. , 1998, Medical physics.

[32]  T Bortfeld,et al.  Optimized planning using physical objectives and constraints. , 1999, Seminars in radiation oncology.

[33]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[34]  H. Romeijn,et al.  A novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planning. , 2003, Physics in medicine and biology.

[35]  F Nüsslin,et al.  An objective function for radiation treatment optimization based on local biological measures. , 1999, Physics in medicine and biology.

[36]  Zhongxing Liao,et al.  Interactively exploring optimized treatment plans. , 2005, International journal of radiation oncology, biology, physics.

[37]  J. Kereiakes,et al.  The method of linear programming applied to radiation treatment planning. , 1968, Radiology.

[38]  B. Stewart,et al.  World Cancer Report , 2003 .

[39]  Matthias Ehrgott,et al.  Optimisation of beam directions in intensity modulated radiation therapy planning , 2003, OR Spectr..

[40]  M. Ehrgott,et al.  Improved ε-Constraint Method for Multiobjective Programming , 2008 .

[41]  M. Ehrgott,et al.  Beam selection in radiotherapy design , 2008 .

[42]  A L Boyer,et al.  Optimization of importance factors in inverse planning. , 1999, Physics in medicine and biology.

[43]  L Xing,et al.  Application of constrained least-squares techniques to IMRT treatment planning. , 2002, International journal of radiation oncology, biology, physics.

[44]  O. C. L. Haas Optimisation and control systems modelling in radiotherapy treatment planning , 1997 .

[45]  Allen Holder Radiotherapy Treatment Design and Linear Programming , 2005 .

[46]  I. Rosen,et al.  Treatment plan optimization using linear programming. , 1991, Medical physics.

[47]  M. Ehrgott,et al.  Decomposition of matrices and static multileaf collimators: a survey , 2008 .

[48]  R. Jeraj,et al.  The effect of dose calculation accuracy on inverse treatment planning. , 2002, Physics in medicine and biology.

[49]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[50]  H. Romeijn,et al.  A unifying framework for multi-criteria fluence map optimization models. , 2004, Physics in medicine and biology.

[51]  Horst W. Hamacher,et al.  Inverse Radiation Therapy Planning: A Multiple Objective Optimisation Approach , 1999 .

[52]  Ludwig Bogner 3D Conformal Radiation Therapy – Multimedia Introduction to Methods and Techniques: hcrausgegeben von W. Schlegel und A. Mahr, erschienen im Springer Verlag Berlin Heidelberg New York als CD-ROM , 2002 .

[53]  Stefania Bellavia,et al.  An interior point Newton‐like method for non‐negative least‐squares problems with degenerate solution , 2006, Numer. Linear Algebra Appl..

[54]  Michael C. Ferris,et al.  Optimizing the Delivery of Radiation Therapy to Cancer Patients , 1999, SIAM Rev..

[55]  Matthias Ehrgott,et al.  Computation of ideal and Nadir values and implications for their use in MCDM methods , 2003, Eur. J. Oper. Res..

[56]  Yair Censor,et al.  MATHEMATICAL OPTIMIZATION FOR THE INVERSE PROBLEM OF INTENSITY MODULATED RADIATION THERAPY , 2003 .

[57]  New technologies in conformal radiation therapy , 2000 .