Exploiting query reformulations for web search result diversification
暂无分享,去创建一个
[1] Farzin Maghoul,et al. Query clustering using click-through graph , 2009, WWW '09.
[2] David R. Karger,et al. Less is More Probabilistic Models for Retrieving Fewer Relevant Documents , 2006 .
[3] Ricardo A. Baeza-Yates,et al. Query Recommendation Using Query Logs in Search Engines , 2004, EDBT Workshops.
[4] Filip Radlinski,et al. Improving personalized web search using result diversification , 2006, SIGIR.
[5] Stephen E. Robertson,et al. Ambiguous requests: implications for retrieval tests, systems and theories , 2007, SIGF.
[6] Ben Carterette,et al. Probabilistic models of ranking novel documents for faceted topic retrieval , 2009, CIKM.
[7] Sreenivas Gollapudi,et al. Diversifying search results , 2009, WSDM '09.
[8] Mark Sanderson,et al. Ambiguous requests: implications for retrieval tests , 2007 .
[9] Djoerd Hiemstra,et al. Using language models for information retrieval , 2001 .
[10] Giorgio Gambosi,et al. FUB, IASI-CNR and University of Tor Vergata at TREC 2008 Blog Track , 2008, TREC.
[11] Craig MacDonald,et al. Explicit Search Result Diversification through Sub-queries , 2010, ECIR.
[12] Amanda Spink,et al. Real life information retrieval: a study of user queries on the Web , 1998, SIGF.
[13] J. J. Rocchio,et al. Relevance feedback in information retrieval , 1971 .
[14] Wei-Ying Ma,et al. Learning to cluster web search results , 2004, SIGIR '04.
[15] Jade Goldstein-Stewart,et al. The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.
[16] Craig MacDonald,et al. University of Glasgow at TREC 2008: Experiments in Blog, Enterprise, and Relevance Feedback Tracks with Terrier , 2008, TREC.
[17] Iadh Ounis,et al. Incorporating term dependency in the dfr framework , 2007, SIGIR.
[18] J. Davenport. Editor , 1960 .
[19] Stephen E. Robertson,et al. Okapi at TREC-3 , 1994, TREC.
[20] Stephen E. Robertson,et al. GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .
[21] Milad Shokouhi,et al. Central-Rank-Based Collection Selection in Uncooperative Distributed Information Retrieval , 2007, ECIR.
[22] Jaana Kekäläinen,et al. Cumulated gain-based evaluation of IR techniques , 2002, TOIS.
[23] Sreenivas Gollapudi,et al. An axiomatic approach for result diversification , 2009, WWW '09.
[24] Ben He,et al. Terrier : A High Performance and Scalable Information Retrieval Platform , 2022 .
[25] Charles L. A. Clarke,et al. An Effectiveness Measure for Ambiguous and Underspecified Queries , 2009, ICTIR.
[26] Francesco Bonchi,et al. From "Dango" to "Japanese Cakes": Query Reformulation Models and Patterns , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.
[27] Ben Carterette,et al. An analysis of NP-completeness in novelty and diversity ranking , 2009, Information Retrieval.
[28] Marti A. Hearst. Search User Interfaces , 2009 .
[29] William Goffman,et al. On relevance as a measure , 1964, Inf. Storage Retr..
[30] Jun Wang,et al. Portfolio theory of information retrieval , 2009, SIGIR.
[31] S. Robertson. The probability ranking principle in IR , 1997 .
[32] Charles L. A. Clarke,et al. Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.
[33] Dorit S. Hochbaum,et al. Approximation Algorithms for NP-Hard Problems , 1996 .