Progress in Silicon Single-Photon Avalanche Diodes

Silicon single-photon avalanche diodes (SPADs) are nowadays a solid-state alternative to photomultiplier tubes (PMTs) in single-photon counting (SPC) and time-correlated single-photon counting (TCSPC) over the visible spectral range up to 1-mum wavelength. SPADs implemented in planar technology compatible with CMOS circuits offer typical advantages of microelectronic devices (small size, ruggedness, low voltage, low power, etc.). Furthermore, they have inherently higher photon detection efficiency, since they do not rely on electron emission in vacuum from a photocathode as do PMTs, but instead on the internal photoelectric effect. However, PMTs offer much wider sensitive area, which greatly simplifies the design of optical systems; they also attain remarkable performance at high counting rate, and offer picosecond timing resolution with microchannel plate models. In order to make SPAD detectors more competitive in a broader range of SPC and TCSPC applications, it is necessary to face several issues in the semiconductor device design and technology. Such issues will be discussed in the context of the two possible approaches to such a challenge: employing a standard industrial high-voltage CMOS technology or developing a dedicated CMOS-compatible technology. Advances recently attained in the development of SPAD detectors will be outlined and discussed with reference to both single-element detectors and integrated detector arrays.

[1]  Ivan Rech,et al.  Monolithic silicon matrix detector with 50 μm photon counting pixels , 2007 .

[2]  Edoardo Charbon,et al.  A single photon avalanche diode array fabricated in 0.35-μm CMOS and based on an event-driven readout for TCSPC experiments , 2006, SPIE Optics East.

[3]  S. Esener,et al.  STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology , 2006, IEEE Electron Device Letters.

[4]  Alexis Rochas,et al.  Ultra-compact CMOS single photon detector , 2006, SPIE Optics East.

[5]  A. Nakassis,et al.  High-speed photon counting techniques for broadband quantum key distribution , 2006, SPIE Optics East.

[6]  Angelo Gulinatti,et al.  Planar silicon SPADs with 200-μm diameter and 35-ps photon timing resolution , 2006, SPIE Optics East.

[7]  I Rech,et al.  Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes. , 2006, Optics express.

[8]  B. Vojnovic Advanced Time‐Correlated Single Photon Counting Techniques , 2006 .

[9]  W. Lawrence,et al.  Characterization of a CMOS Geiger photodiode pixel , 2006, IEEE Transactions on Electron Devices.

[10]  Roberto Roncella,et al.  Single-photon avalanche diode arrays for fast transients and adaptive optics , 2006, IEEE Transactions on Instrumentation and Measurement.

[11]  M. Ghioni,et al.  Large-area avalanche diodes for picosecond time-correlated photon counting , 2005, Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005..

[12]  S Tisa,et al.  Single-photon imaging at 20,000 frames/s. , 2005, Optics letters.

[13]  P.-A. Besse,et al.  Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes , 2005, IEEE Journal of Solid-State Circuits.

[14]  Franco Zappa,et al.  Complete single-photon counting and timing module in a microchip. , 2005, Optics letters.

[15]  Angelo Gulinatti,et al.  35 ps time resolution at room temperature with large area single photon avalanche diodes , 2005 .

[16]  Vasilis Ntziachristos,et al.  Looking and listening to light: the evolution of whole-body photonic imaging , 2005, Nature Biotechnology.

[17]  S. Cova,et al.  SPADA: single-photon avalanche diode arrays , 2005, IEEE Photonics Technology Letters.

[18]  Rudolf Rigler,et al.  Fluorescence correlation spectroscopy of molecular motions and kinetics. , 2005, Advanced drug delivery reviews.

[19]  Piazza Leonardo da Vinci,et al.  Large-area avalanche diodes for picosecond time-correlated photon counting , 2005 .

[20]  A. Mink,et al.  Quantum key distribution with 1.25 Gbps clock synchronization , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[21]  Massimiliano Belluso,et al.  Silicon planar technology for single-photon optical detectors , 2003, SPIE Photonics Europe.

[22]  R. M. Forsyth Technology and design of integrated circuits for up to 50 V applications , 2003, IEEE International Conference on Industrial Technology, 2003.

[23]  S. Cova,et al.  Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors , 2003, IEEE J. Solid State Circuits.

[24]  R. Popovic,et al.  First fully integrated 2-D array of single-photon detectors in standard CMOS technology , 2003, IEEE Photonics Technology Letters.

[25]  P.-A. Besse,et al.  Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology , 2003 .

[26]  A. Mathewson,et al.  A novel silicon Geiger-mode avalanche photodiode , 2002, Digest. International Electron Devices Meeting,.

[27]  R. Wise,et al.  EFFECTIVE INTRINSIC GETTERING FOR 200MM AND 300MM P/P- WAFERS IN A LOW THERMAL BUDGET 0.13µm ADVANCED CMOS LOGIC PROCESS , 2002 .

[28]  D. Young,et al.  Geiger-Mode Avalanche Photodiodes for Three-Dimensional Imaging , 2002 .

[29]  Elliot L. Elson,et al.  Fluorescence correlation spectroscopy : theory and applications , 2001 .

[30]  Michael Seibt,et al.  Mechanisms of transition-metal gettering in silicon , 2000 .

[31]  D. Young,et al.  Geiger-mode avalanche photodiode arrays integrated with CMOS timing circuits , 1998, 56th Annual Device Research Conference Digest (Cat. No.98TH8373).

[32]  W. Kindt,et al.  Modelling and fabrication of Geiger mode avalanche photodiodes , 1998 .

[33]  Massimo Ghioni,et al.  Avalanche detector with ultraclean response for time-resolved photon counting , 1998 .

[34]  S. Hell,et al.  Multifocal multiphoton microscopy. , 1998, Optics letters.

[35]  A. Lacaita,et al.  Avalanche photodiodes and quenching circuits for single-photon detection. , 1996, Applied optics.

[36]  M. Ghioni,et al.  Single-photon avalanche diode with ultrafast pulse response free from slow tails , 1993, IEEE Electron Device Letters.

[37]  A. Lacaita,et al.  On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices , 1993 .

[38]  A. Lacaita,et al.  Trapping phenomena in avalanche photodiodes on nanosecond scale , 1991, IEEE Electron Device Letters.

[39]  Andrea L. Lacaita,et al.  Double epitaxy improves single-photon avalanche diode performance , 1989 .

[40]  Andrea L. Lacaita,et al.  20-ps timing resolution with single-photon avalanche diodes , 1989 .

[41]  A. Lacaita,et al.  New silicon epitaxial avalanche diode for single-photon timing at room temperature , 1988 .

[42]  Sergio Cova,et al.  Performance comparison of a single‐photon avalanche diode with a microchannel‐plate photomultiplier in time‐correlated single‐photon counting , 1988 .

[43]  S. Cova,et al.  Carrier diffusion effects in the time-response of a fast photodiode , 1985 .

[44]  Karl Hess,et al.  Electric field enhanced emission from non‐Coulombic traps in semiconductors , 1981 .

[45]  G. Vincent,et al.  Electric field effect on the thermal emission of traps in semiconductor junctions , 1979 .

[46]  W. Oldham,et al.  Triggering phenomena in avalanche diodes , 1972 .

[47]  R. Mcintyre The distribution of gains in uniformly multiplying avalanche photodiodes: Theory , 1972 .

[48]  R. Haitz Mechanisms Contributing to the Noise Pulse Rate of Avalanche Diodes , 1965 .

[49]  R. Haitz,et al.  Model for the Electrical Behavior of a Microplasma , 1964 .

[50]  A. Goetzberger,et al.  Avalanche Effects in Silicon p—n Junctions. II. Structurally Perfect Junctions , 1963 .