Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation

High-order compact finite difference method with operator-splitting technique for solving the two dimensional time fractional diffusion equation is considered in this paper. The Caputo derivative is evaluated by the L1 approximation, and the second order derivatives with respect to the space variables are approximated by the compact finite differences to obtain fully discrete implicit schemes. Alternating Direction Implicit (ADI) method is used to split the original problem into two separate one dimensional problems. One scheme is given by replacing the unknowns by the values on the previous level directly and a correction term is added for another scheme. Theoretical analysis for the first scheme is discussed. The local truncation error is analyzed and the stability is proved by the Fourier method. Using the energy method, the convergence of the compact finite difference scheme is proved. Numerical results are provided to verify the accuracy and efficiency of the two proposed algorithms. For the order of the temporal derivative lies in different intervals $\left(0,\frac{1}{2}\right)$ or $\left[\frac{1}{2},1\right)$, corresponding appropriate scheme is suggested.

[1]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[2]  Jianping Zhu,et al.  An efficient high‐order algorithm for solving systems of reaction‐diffusion equations , 2002 .

[3]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[4]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[5]  Fawang Liu,et al.  Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation , 2010, Numerical Algorithms.

[6]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[7]  J. J. Douglas On the Numerical Integration of $\frac{\partial ^2 u}{\partial x^2 } + \frac{\partial ^2 u}{\partial y^2 } = \frac{\partial u}{\partial t}$ by Implicit Methods , 1955 .

[8]  Zhi-Zhong Sun,et al.  Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..

[9]  Juan I. Ramos Implicit, compact, linearized θ-methods with factorization for multidimensional reaction-diffusion equations , 1998, Appl. Math. Comput..

[10]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[11]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[12]  Jichun Li,et al.  Finite Difference Methods for Elliptic Equations , 2008 .

[13]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[14]  N. N. I︠A︡nenko The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables , 1971 .

[15]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[16]  Mark M. Meerschaert,et al.  A second-order accurate numerical method for the two-dimensional fractional diffusion equation , 2007, J. Comput. Phys..

[17]  Paul Fischer,et al.  High-Order Methods for Incompressible Fluid Flow: Parabolic and Hyperbolic Problems , 2002 .

[18]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[19]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[20]  Mingrong Cui,et al.  Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..

[21]  J. E. Dendy Alternating Direction Methods for Nonlinear Time-Dependent Problems , 1977 .

[22]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[23]  I. Podlubny Matrix Approach to Discrete Fractional Calculus , 2000 .

[24]  Fawang Liu,et al.  Finite difference approximations for the fractional Fokker–Planck equation , 2009 .

[25]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[26]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[27]  Hermann Brunner,et al.  Numerical simulations of 2D fractional subdiffusion problems , 2010, J. Comput. Phys..

[28]  R. Hirsh,et al.  Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique , 1975 .

[29]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[30]  I. Podlubny Fractional differential equations , 1998 .

[31]  Fawang Liu,et al.  Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection-diffusion equation , 2011, Numerical Algorithms.

[32]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[33]  J. Douglas,et al.  A general formulation of alternating direction methods , 1964 .

[34]  Changpin Li,et al.  Numerical approaches to fractional calculus and fractional ordinary differential equation , 2011, J. Comput. Phys..

[35]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[36]  Hong Wang,et al.  An O(N log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations , 2011, J. Comput. Phys..

[37]  Norbert Heuer,et al.  Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..

[38]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[39]  Zhi-zhong Sun,et al.  Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations , 2010 .