Mutual reinforcement of inflammation and carcinogenesis by the Helicobacter pylori CagA oncoprotein

[1]  M. Hatakeyama Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. , 2014, Cell host & microbe.

[2]  Vassilis G Gorgoulis,et al.  Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. , 2013, Cancer cell.

[3]  E. Latz,et al.  Activation of the NLRP3 Inflammasome by IAV Virulence Protein PB1-F2 Contributes to Severe Pathophysiology and Disease , 2013, PLoS pathogens.

[4]  M. Hattori,et al.  Robustness of Gut Microbiota of Healthy Adults in Response to Probiotic Intervention Revealed by High-Throughput Pyrosequencing , 2013, DNA research : an international journal for rapid publication of reports on genes and genomes.

[5]  T. Kwok,et al.  A novel NOD1‐ and CagA‐independent pathway of interleukin‐8 induction mediated by the Helicobacter pylori type IV secretion system , 2013, Cellular microbiology.

[6]  M. Kent,et al.  H. pylori virulence factor CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model , 2013, Disease Models & Mechanisms.

[7]  H. Aburatani,et al.  CDX1 confers intestinal phenotype on gastric epithelial cells via induction of stemness-associated reprogramming factors SALL4 and KLF5 , 2012, Proceedings of the National Academy of Sciences.

[8]  M. Neurath,et al.  Colitis and Colorectal Cancer , 2012, Digestive Diseases.

[9]  F. Inagaki,et al.  Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. , 2012, Cell host & microbe.

[10]  M. Perše,et al.  Dextran Sodium Sulphate Colitis Mouse Model: Traps and Tricks , 2012, Journal of biomedicine & biotechnology.

[11]  W. Hardt,et al.  Caspase-1 Has Both Proinflammatory and Regulatory Properties in Helicobacter Infections, Which Are Differentially Mediated by Its Substrates IL-1β and IL-18 , 2012, The Journal of Immunology.

[12]  M. Karin,et al.  NF‐κB and the link between inflammation and cancer , 2012, Immunological reviews.

[13]  P. Cheresh,et al.  P‐Selectin Glycoprotein Ligand‐1 Is Needed for Sequential Recruitment of T‐Helper 1 (Th1) and Local Generation of Th17 T Cells in Dextran Sodium Sulfate (DSS) Colitis , 2012, Inflammatory bowel diseases.

[14]  K. Rajewsky,et al.  Constitutive IKK2 activation in intestinal epithelial cells induces intestinal tumors in mice. , 2011, The Journal of clinical investigation.

[15]  R. Rappuoli,et al.  Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host , 2011, Proceedings of the National Academy of Sciences.

[16]  E. Fearon Molecular genetics of colorectal cancer. , 2011, Annual review of pathology.

[17]  T. Wang,et al.  Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. , 2011, Gastroenterology.

[18]  M. Naumann,et al.  What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori. , 2010, Trends in microbiology.

[19]  Naomi Ohnishi,et al.  The CagA protein of Helicobacter pylori suppresses the functions of dendritic cell in mice. , 2010, Archives of biochemistry and biophysics.

[20]  M. Kastan,et al.  The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. , 2010, Immunity.

[21]  Le Dong,et al.  TLR4 monoclonal antibody blockade suppresses dextran‐sulfate‐sodium‐induced colitis in mice , 2010, Journal of gastroenterology and hepatology.

[22]  Lin-Feng Chen,et al.  Helicobacter pylori CagA activates NF‐κB by targeting TAK1 for TRAF6‐mediated Lys 63 ubiquitination , 2009, EMBO reports.

[23]  E. Mandelkow,et al.  The tau of MARK: a polarized view of the cytoskeleton. , 2009, Trends in biochemical sciences.

[24]  P. Alex,et al.  Distinct Cytokine Patterns Identified from Multiplex Profiles of Murine DSS and TNBS‐Induced Colitis , 2009, Inflammatory bowel diseases.

[25]  C. Sasakawa,et al.  Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. , 2009, Cell host & microbe.

[26]  T. Okanoue,et al.  Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice. , 2008, Biochemical and biophysical research communications.

[27]  B. Porse,et al.  Bone Marrow-Derived Macrophages (BMM): Isolation and Applications. , 2008, CSH protocols.

[28]  G. Bhagat,et al.  Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. , 2008, Cancer cell.

[29]  P. Allavena,et al.  Cancer-related inflammation , 2008, Nature.

[30]  Crystal M. Botham,et al.  A Transgenic Drosophila Model Demonstrates That the Helicobacter pylori CagA Protein Functions as a Eukaryotic Gab Adaptor , 2008, PLoS pathogens.

[31]  Naomi Ohnishi,et al.  Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse , 2008, Proceedings of the National Academy of Sciences.

[32]  Tianyu Li,et al.  Loss of p53 enhances the induction of colitis-associated neoplasia by dextran sulfate sodium. , 2007, Carcinogenesis.

[33]  H. Cooper,et al.  Dextran sulfate sodium-induced colitis-associated neoplasia: a promising model for the development of chemopreventive interventions , 2007, Acta Pharmacologica Sinica.

[34]  P. Correa,et al.  Carcinogenesis of Helicobacter pylori. , 2007, Gastroenterology.

[35]  H. Aburatani,et al.  Helicobacter pylori CagA interacts with E-cadherin and deregulates the β-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells , 2007, Oncogene.

[36]  C. Obuse,et al.  Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity , 2007, Nature.

[37]  F. Martinon,et al.  Inflammasome Components NALP 1 and 3 Show Distinct but Separate Expression Profiles in Human Tissues Suggesting a Site-specific Role in the Inflammatory Response , 2007, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[38]  Takeshi Azuma,et al.  Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium , 2007, Nature Medicine.

[39]  S. Brandt,et al.  NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  G. Rieder,et al.  Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. , 2005, Gastroenterology.

[41]  John Bertin,et al.  Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island , 2004, Nature Immunology.

[42]  M. Hatakeyama Oncogenic mechanisms of the Helicobacter pylori CagA protein , 2004, Nature Reviews Cancer.

[43]  Ruslan Medzhitov,et al.  Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis , 2004, Cell.

[44]  T. Azuma,et al.  Association between diversity in the Src homology 2 domain--containing tyrosine phosphatase binding site of Helicobacter pylori CagA protein and gastric atrophy and cancer. , 2004, The Journal of infectious diseases.

[45]  Hideo Negishi,et al.  Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence , 2003, Nature.

[46]  Xin Lu,et al.  Live or let die: the cell's response to p53 , 2002, Nature Reviews Cancer.

[47]  M. Blaser,et al.  Helicobacter pylori and gastrointestinal tract adenocarcinomas , 2002, Nature Reviews Cancer.

[48]  Cytoskeletal Control of Gene Expression : Depolymerization of Microtubules Activates NF-xB , 2002 .

[49]  Y. Shiratori,et al.  Distinct Mechanism of Helicobacter pylori-mediated NF-κB Activation between Gastric Cancer Cells and Monocytic Cells* , 2001, The Journal of Biological Chemistry.

[50]  M. Carrington,et al.  Interleukin-1 polymorphisms associated with increased risk of gastric cancer , 2000, Nature.

[51]  J. Schölmerich,et al.  The role of the resident intestinal flora in acute and chronic dextran sulfate sodium‐induced colitis in mice , 2000, European journal of gastroenterology & hepatology.

[52]  T. Wang,et al.  Synergistic interaction between hypergastrinemia and Helicobacter infection in a mouse model of gastric cancer. , 2000, Gastroenterology.

[53]  N. Lipman,et al.  Identification of pseudocysts of Tritrichomonas muris in Armenian hamsters and their transmission to mice. , 1999, Laboratory animal science.

[54]  N. Leclerc,et al.  Taxol selectively blocks microtubule dependent NF-κB activation by phorbol ester via inhibition of IκBα phosphorylation and degradation , 1999, Oncogene.

[55]  E. Bloemena,et al.  Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines , 1998, Clinical and experimental immunology.

[56]  D. Serraino,et al.  Atrophic Gastritis and Intestinal Metaplasia in Helicobacter pylori Infection: The role of CagA status , 1998, American Journal of Gastroenterology.

[57]  M. Blagosklonny Loss of function and p53 protein stabilization , 1997, Oncogene.

[58]  R. Rappuoli,et al.  Induction of interleukin-8 secretion from gastric epithelial cells by a cagA negative isogenic mutant of Helicobacter pylori. , 1995, Journal of clinical pathology.

[59]  M. Blaser,et al.  Copyright � 1995, American Society for Microbiology Interleukin-8 Response of Gastric Epithelial Cell Lines to Helicobacter pylori Stimulation In Vitro , 1994 .

[60]  M. Karin,et al.  Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-kappa B , 1995, The Journal of cell biology.

[61]  S. Fields,et al.  Two cellular proteins that bind to wild-type but not mutant p53. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Feldman,et al.  The role of macrophages in the induction of antibody in x-irradiated animals. , 1967, Immunology.