Computing Geodesic Distances in Tree Space
暂无分享,去创建一个
[1] S. Holmes,et al. STATISTICAL APPROACH TO TESTS INVOLVING PHYLOGENIES , 2004 .
[2] J. Canny,et al. Lower Bounds for Shortest Path and Related Problems , 1987 .
[3] Arndt von Haeseler,et al. An Exact Algorithm for the Geodesic Distance between Phylogenetic Trees , 2008, J. Comput. Biol..
[4] Michael D. Hendy,et al. A Framework for the Quantitative Study of Evolutionary Trees , 1989 .
[5] Louis J. Billera,et al. Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..
[6] J. Hein. Reconstructing evolution of sequences subject to recombination using parsimony. , 1990, Mathematical biosciences.
[7] Joseph S. B. Mitchell,et al. New results on shortest paths in three dimensions , 2004, SCG '04.
[8] Moshe Dror,et al. Touring a sequence of polygons , 2003, STOC '03.
[9] M. Suchard. Stochastic Models for Horizontal Gene Transfer , 2005, Genetics.
[10] Susan Holmes,et al. Statistics for phylogenetic trees. , 2003, Theoretical population biology.
[11] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[12] M. Bridson,et al. Metric Spaces of Non-Positive Curvature , 1999 .
[13] Temple F. Smith,et al. On the similarity of dendrograms. , 1978, Journal of theoretical biology.
[14] J. Felsenstein,et al. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. , 1994, Molecular biology and evolution.
[15] L. Segal. John , 2013, The Messianic Secret.
[16] Xin He,et al. On the Linear-Cost Subtree-Transfer Distance between Phylogenetic Trees , 1999, Algorithmica.
[17] Ziheng Yang,et al. PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..
[18] Sean R. Eddy,et al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .
[19] J. Scott Provan,et al. A Fast Algorithm for Computing Geodesic Distances in Tree Space , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[20] John Smillie,et al. GEODESICS IN THE SPACE OF TREES , 2008 .
[21] Lior Pachter,et al. Identification of evolutionary hotspots in the rodent genomes. , 2004, Genome research.
[22] Caroline J. Klivans,et al. The Bergman complex of a matroid and phylogenetic trees , 2006, J. Comb. Theory, Ser. B.
[23] D. Robinson,et al. Comparison of phylogenetic trees , 1981 .
[24] Nina Amenta,et al. Approximating geodesic tree distance , 2007, Inf. Process. Lett..
[25] Louis J. Billera,et al. Distance computation in the space of phylogenetic trees , 2008 .
[26] Joseph S. B. Mitchell,et al. Touring Convex Bodies - A Conic Programming Solution , 2005, CCCG.
[27] R. Stanley. Enumerative Combinatorics: Volume 1 , 2011 .
[28] Xin He,et al. Computing Distances between Evolutionary Trees , 1998 .
[29] Joseph S. B. Mitchell,et al. Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.
[30] D. Robinson. Comparison of labeled trees with valency three , 1971 .
[31] Fred R. McMorris,et al. COMPARISON OF UNDIRECTED PHYLOGENETIC TREES BASED ON SUBTREES OF FOUR EVOLUTIONARY UNITS , 1985 .
[32] David E. Speyer,et al. The tropical Grassmannian , 2003, math/0304218.
[33] D. Robinson,et al. Comparison of weighted labelled trees , 1979 .
[34] B. Rannala,et al. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.