Computing Geodesic Distances in Tree Space

We present two algorithms for computing the geodesic distance between phylogenetic trees in tree space, as introduced by Billera, Holmes, and Vogtmann (2001). We show that the possible combinatorial types of shortest paths between two trees can be compactly represented by a partially ordered set. We calculate the shortest distance along each candidate path by converting the problem into one of finding the shortest path through a certain region of Euclidean space. In particular, we show there is a linear time algorithm for finding the shortest path between a point in the all positive orthant and a point in the all negative orthant of R^k contained in the subspace of R^k consisting of all orthants with the first i coordinates non-positive and the remaining coordinates non-negative for 0 <= i <= k.

[1]  S. Holmes,et al.  STATISTICAL APPROACH TO TESTS INVOLVING PHYLOGENIES , 2004 .

[2]  J. Canny,et al.  Lower Bounds for Shortest Path and Related Problems , 1987 .

[3]  Arndt von Haeseler,et al.  An Exact Algorithm for the Geodesic Distance between Phylogenetic Trees , 2008, J. Comput. Biol..

[4]  Michael D. Hendy,et al.  A Framework for the Quantitative Study of Evolutionary Trees , 1989 .

[5]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[6]  J. Hein Reconstructing evolution of sequences subject to recombination using parsimony. , 1990, Mathematical biosciences.

[7]  Joseph S. B. Mitchell,et al.  New results on shortest paths in three dimensions , 2004, SCG '04.

[8]  Moshe Dror,et al.  Touring a sequence of polygons , 2003, STOC '03.

[9]  M. Suchard Stochastic Models for Horizontal Gene Transfer , 2005, Genetics.

[10]  Susan Holmes,et al.  Statistics for phylogenetic trees. , 2003, Theoretical population biology.

[11]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[12]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[13]  Temple F. Smith,et al.  On the similarity of dendrograms. , 1978, Journal of theoretical biology.

[14]  J. Felsenstein,et al.  A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. , 1994, Molecular biology and evolution.

[15]  L. Segal John , 2013, The Messianic Secret.

[16]  Xin He,et al.  On the Linear-Cost Subtree-Transfer Distance between Phylogenetic Trees , 1999, Algorithmica.

[17]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[18]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[19]  J. Scott Provan,et al.  A Fast Algorithm for Computing Geodesic Distances in Tree Space , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[20]  John Smillie,et al.  GEODESICS IN THE SPACE OF TREES , 2008 .

[21]  Lior Pachter,et al.  Identification of evolutionary hotspots in the rodent genomes. , 2004, Genome research.

[22]  Caroline J. Klivans,et al.  The Bergman complex of a matroid and phylogenetic trees , 2006, J. Comb. Theory, Ser. B.

[23]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[24]  Nina Amenta,et al.  Approximating geodesic tree distance , 2007, Inf. Process. Lett..

[25]  Louis J. Billera,et al.  Distance computation in the space of phylogenetic trees , 2008 .

[26]  Joseph S. B. Mitchell,et al.  Touring Convex Bodies - A Conic Programming Solution , 2005, CCCG.

[27]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[28]  Xin He,et al.  Computing Distances between Evolutionary Trees , 1998 .

[29]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[30]  D. Robinson Comparison of labeled trees with valency three , 1971 .

[31]  Fred R. McMorris,et al.  COMPARISON OF UNDIRECTED PHYLOGENETIC TREES BASED ON SUBTREES OF FOUR EVOLUTIONARY UNITS , 1985 .

[32]  David E. Speyer,et al.  The tropical Grassmannian , 2003, math/0304218.

[33]  D. Robinson,et al.  Comparison of weighted labelled trees , 1979 .

[34]  B. Rannala,et al.  Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.