Micro- and Nano-scale Colloidal Dynamics Near Surfaces

of “Microand Nano-scale Colloidal Dynamics Near Surfaces,” by Jeffrey S. Guasto, Ph.D., Brown University, May 2009 We present an examination of near-wall colloidal particle dynamics, their associated measurement techniques and applications to microand nano-scale fluid flows. The dynamics of small particles in solution exhibit interesting and useful properties. The most popular measurement methods for characterizing their motion are imaging techniques based on evanescent wave illumination, namely total internal reflection fluorescence (TIRF) microscopy, which allows the imaging of small, fluorescent particles (10 nanometer to 10 micron) within a few hundred nanometers of a fluid-solid interface. In some instances, the particle intensity may be used to determine particle’s distance from the wall, and thus, the three-dimensional particle motion. In the presence of a solid boundary, the random, Brownian motion and the convective motion of the particles is modified due to interactions between the particle and wall. Some examples of these effects are hindered diffusion, shear-induced rolling, electrostatic repulsion and van der Waals attractive forces. This has immense consequences for fluid velocity measurement techniques that infer fluid motion from the measured particle motion. Evanescent wave illumination was applied to measure single particle dynamics and also to infer the fluid motion in several fluid systems. The dynamics of semiconductor nanocrystals or quantum dots (QDs) and single molecules were examined and applied as tracer particles, extending the resolution of particle velocimetry probes down to about 10 nm. Additionally, the inherent intensity variation of QDs with temperature was used to measure the local fluid temperature within the evanescent field. QDs were also applied to measure high speed micro-flows (near 1 cm/s) within about 200 nm of the fluid-solid interface. A three-dimensional TIRF velocimetry (3D-TIRV) technique was developed to measure slip velocities at microchannel walls with tracer particles on the order of 100 nm. The three-dimensional adhesion dynamics of large (6 micron diameter) particles were examined to determine the kinetics of adhesion ligands and receptors for applications to leukocyte dynamics. Finally, the techniques of fluorescence microscopy and in-line holographic imaging were applied to characterized the structure and dynamics of electrospray droplets. This dissertation by Jeffrey S. Guasto is accepted in its present form by the Division of Engineering as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kenneth S. Breuer, Advisor Recommended to the Graduate Council Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Derek Stein, Reader Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anubhav Tripathi, Reader Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rashid Zia, Reader Approved by the Graduate Council Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sheila Bonde Dean of Graduate School

[1]  A. Gomez,et al.  On the structure of an electrostatic spray of monodisperse droplets , 1994 .

[2]  S. Kasap Optoelectronics and Photonics: Principles and Practices , 2001 .

[3]  S. Granick,et al.  Limits of the hydrodynamic no-slip boundary condition. , 2002, Physical review letters.

[4]  Paulo Lozano,et al.  Studies on the Ion-Droplet Mixed Regime in Colloid Thrusters , 2003 .

[5]  M H Jericho,et al.  Digital in-line holography of microspheres. , 2002, Applied optics.

[6]  O. Salata,et al.  Applications of nanoparticles in biology and medicine , 2004, Journal of nanobiotechnology.

[7]  Neil Genzlinger A. and Q , 2006 .

[8]  Minami Yoda,et al.  Velocity measurements inside the diffuse electric double layer in electro-osmotic flow , 2006 .

[9]  Edward L Cussler,et al.  Diffusion: Mass Transfer in Fluid Systems , 1984 .

[10]  Minami Yoda,et al.  Diffusion-induced bias in near-wall velocimetry , 2006, Journal of Fluid Mechanics.

[11]  D. Toomre,et al.  Lighting up the cell surface with evanescent wave microscopy. , 2001, Trends in cell biology.

[12]  E. Peters,et al.  Efficient Brownian dynamics simulation of particles near walls. II. Sticky walls. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Michael R. King,et al.  Measurement of the inertial lift on a moving sphere in contact with a plane wall in a shear flow , 1997 .

[14]  Taekjip Ha,et al.  Near-complete suppression of quantum dot blinking in ambient conditions. , 2004, Journal of the American Chemical Society.

[15]  D. Beebe,et al.  A particle image velocimetry system for microfluidics , 1998 .

[16]  Apparent slip due to the motion of suspended particles in flows of electrolyte solutions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[17]  Erhard Schnell,et al.  Slippage of Water over Nonwettable Surfaces , 1956 .

[18]  S. Bike Measuring colloidal forces using evanescent wave scattering , 2000 .

[19]  Kenneth S. Breuer,et al.  Microscale Diagnostic Techniques , 2005 .

[20]  J. Thome Boiling in microchannels: a review of experiment and theory , 2004 .

[21]  Chang-Hwan Choi,et al.  To Slip or Not to Slip: Water Flows in Hydrophilic and Hydrophobic Microchannels , 2002 .

[22]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[23]  W M Reichert,et al.  Application of total internal reflection fluorescence microscopy to study cell adhesion to biomaterials. , 1998, Biomaterials.

[24]  William H Guilford,et al.  The molecular mechanics of P- and L-selectin lectin domains binding to PSGL-1. , 2004, Biophysical journal.

[25]  Kenneth S. Breuer,et al.  Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking , 2008 .

[26]  S. Wereley,et al.  Cross-correlation analysis for temperature measurement , 2002 .

[27]  Stephen Quake,et al.  A nanoliter rotary device for polymerase chain reaction , 2002, Electrophoresis.

[28]  Vikram C. Sundar,et al.  Quantum-dot optical temperature probes , 2003 .

[29]  Y. Cheng,et al.  Diffusion of Mesoscopic Probes in Aqueous Polymer Solutions Measured by Fluorescence Recovery after Photobleaching , 2002 .

[30]  CHRISTEL HOHENEGGER,et al.  Statistical Reconstruction of Velocity Profiles for Nanoparticle Image Velocimetry , 2007, SIAM J. Appl. Math..

[31]  K. Christensen,et al.  A Two-Color Fluorescent Thermometry Technique for Microfluidic Devices , 2008 .

[32]  C. Meinhart,et al.  Quantum nanospheres for sub-micron particle image velocimetry , 2007 .

[33]  M. Yoda,et al.  Multilayer nano-particle image velocimetry (MnPIV) in microscale Poiseuille flows , 2008 .

[34]  N. Thompson,et al.  Total internal reflection fluorescence. , 1984, Annual review of biophysics and bioengineering.

[35]  Jeffrey S. Guasto,et al.  Statistical particle tracking velocimetry using molecular and quantum dot tracer particles , 2006 .

[36]  William H Guilford,et al.  Enhancement of L-selectin, but not P-selectin, bond formation frequency by convective flow. , 2008, Biophysical journal.

[37]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[38]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[39]  Peter Huang,et al.  Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry , 2006, Journal of Fluid Mechanics.

[40]  D. Prieve,et al.  Scattering of an evanescent surface wave by a microscopic dielectric sphere. , 1993, Applied optics.

[41]  R. G. Cox,et al.  Slow viscous motion of a sphere parallel to a plane wall , 1967 .

[42]  P. J. McNulty,et al.  Model for Raman and fluorescent scattering by molecules embedded in small particles , 1976 .

[43]  B C Lagerholm,et al.  Total internal reflection fluorescence: applications in cellular biophysics. , 1997, Current opinion in biotechnology.

[44]  H. N. Unni,et al.  Brownian dynamics simulation and experimental study of colloidal particle deposition in a microchannel flow. , 2005, Journal of colloid and interface science.

[45]  P. Cherukat,et al.  The inertial lift on a rigid sphere in a linear shear flow field near a flat wall , 1994, Journal of Fluid Mechanics.

[46]  J. Goodman Introduction to Fourier optics , 1969 .

[47]  R. Sadr,et al.  Impact of hindered Brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination , 2005 .

[48]  Shigeru Murata,et al.  Potential of digital holography in particle measurement , 2000 .

[49]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers , 1999 .

[50]  R. Roy,et al.  Frustrated total internal reflection: A demonstration and review , 1986 .

[51]  M. Gaitan,et al.  Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. , 2001, Analytical chemistry.

[52]  Sameer Jadhav,et al.  A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. , 2005, Biophysical journal.

[53]  R. Brown XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies , 1828 .

[54]  Harold G. Craighead,et al.  ENTROPIC TRAPPING AND ESCAPE OF LONG DNA MOLECULES AT SUBMICRON SIZE CONSTRICTION , 1999 .

[55]  David A. Weitz,et al.  Soft Condensed Matter , 2003 .

[56]  A. Conlisk,et al.  An experimental study of electro-osmotic flow in rectangular microchannels , 2004, Journal of Fluid Mechanics.

[57]  E. Charlaix,et al.  Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. , 2005, Physical review letters.

[58]  P Bongrand,et al.  Diffusion of microspheres in shear flow near a wall: use to measure binding rates between attached molecules. , 2001, Biophysical journal.

[59]  Moungi G. Bawendi,et al.  Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots , 2004 .

[60]  S. Granick,et al.  Rate-dependent slip of Newtonian liquid at smooth surfaces. , 2001, Physical review letters.

[61]  Keiji Sakai,et al.  Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy , 1998 .

[62]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[63]  M. Yoda,et al.  Particle velocity field measurements in a near-wall flow using evanescent wave illumination , 2003 .

[64]  C. Meinhart,et al.  Apparent fluid slip at hydrophobic microchannel walls , 2002 .

[65]  M. Cloupeau,et al.  Electrostatic spraying of liquids: Main functioning modes , 1990 .

[66]  Paulo Lozano,et al.  Electrospray emission from nonwetting flat dielectric surfaces. , 2004, Journal of colloid and interface science.

[67]  Hiroaki Misawa,et al.  A heater-integrated transparent microchannel chip for continuous-flow PCR , 2002 .

[68]  H. Brenner The slow motion of a sphere through a viscous fluid towards a plane surface , 1961 .

[69]  D. Prieve,et al.  Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces , 1990 .

[70]  S. Wereley,et al.  The theory of diffraction-limited resolution in microparticle image velocimetry , 2003 .

[71]  J. Rädler,et al.  Flow profile near a wall measured by double-focus fluorescence cross-correlation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  M. Brenner,et al.  Dynamic mechanisms for apparent slip on hydrophobic surfaces. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  Peter Huang,et al.  Catch strip assay for the relative assessment of two-dimensional protein association kinetics. , 2008, Analytical chemistry.

[74]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[75]  Geoffrey Ingram Taylor,et al.  Disintegration of water drops in an electric field , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[76]  Jun Hu,et al.  Degassing and temperature effects on the formation of nanobubbles at the mica/water interface. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[77]  M. Cloupeau RECIPES FOR USE OF EHD SPRAYING IN CONE-JET MODE AND NOTES ON CORONA DISCHARGE EFFECTS , 1994 .

[78]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[79]  D. Prieve,et al.  Hindered diffusion of a single sphere very near a wall in a nonuniform force field , 1993 .

[80]  M. Bawendi,et al.  Single quantum dot (QD) imaging of fluid flow near surfaces , 2005 .

[81]  M. Bawendi,et al.  Experimental evidence of diffusion-induced bias in near-wall velocimetry using quantum dot measurements , 2008 .

[82]  Manuel Gamero-Castaño,et al.  Electrospray as a source of nanoparticles for efficient colloid thrusters , 2000 .

[83]  Robert Neuhauser,et al.  Blinking statistics in single semiconductor nanocrystal quantum dots , 2001 .

[84]  Jeffrey S. Allen,et al.  Examination of ratiometric laser induced fluorescence thermometry for microscale spatial measurement resolution , 2003 .

[85]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[86]  Shimon Weiss,et al.  Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals , 1999 .

[87]  V. Adrian Parsegian,et al.  Van der Waals Forces: Frontmatter , 2005 .

[88]  P. Bongrand,et al.  What is the biological relevance of the specific bond properties revealed by single‐molecule studies? , 2007, Journal of molecular recognition : JMR.

[89]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[90]  S. Wereley,et al.  Micron-Resolution Particle Image Velocimetry , 2005 .

[91]  J. Katz,et al.  Digital holographic microscope for measuring three-dimensional particle distributions and motions. , 2006, Applied optics.

[92]  V. Adrian Parsegian,et al.  Van Der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists , 2005 .

[93]  M. Chaoui,et al.  Creeping flow around a sphere in a shear flow close to a wall , 2003 .

[94]  S. Pennathur,et al.  Electrokinetic transport in nanochannels. 1. Theory. , 2005, Analytical chemistry.

[95]  M K Cheezum,et al.  Quantitative comparison of algorithms for tracking single fluorescent particles. , 2001, Biophysical journal.

[96]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[97]  T. Squires,et al.  Brownian motion near a partial-slip boundary: A local probe of the no-slip condition , 2005, cond-mat/0506212.

[98]  K. Breuer,et al.  APPARENT SLIP FLOWS IN HYDROPHILIC AND HYDROPHOBIC MICROCHANNELS , 2003 .

[99]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[100]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[101]  R. Adrian,et al.  Brownian motion and correlation in particle image velocimetry , 2000 .

[102]  Peter Huang,et al.  Direct measurement of anisotropic near-wall hindered diffusion using total internal reflection velocimetry. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  R. Adrian,et al.  Whole field measurement of temperature in water using two-color laser induced fluorescence , 1997 .

[104]  Qingming Luo,et al.  Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe , 2006 .

[105]  J. Davenport Editor , 1960 .

[106]  J R Banavar,et al.  Boundary conditions at a fluid-solid interface. , 2001, Physical review letters.

[107]  William F Walker,et al.  Comparison of PSGL-1 microbead and neutrophil rolling: microvillus elongation stabilizes P-selectin bond clusters. , 2002, Biophysical journal.

[108]  J. Lasheras,et al.  THE ELECTROSTATIC SPRAY EMITTED FROM AN ELECTRIFIED CONICAL MENISCUS , 1994 .

[109]  D. Prieve,et al.  Measurement of Colloidal Forces with TIRM , 1999 .

[110]  S. Troian,et al.  A general boundary condition for liquid flow at solid surfaces , 1997, Nature.

[111]  W. Deen Analysis Of Transport Phenomena , 1998 .

[112]  J. Mora,et al.  The current emitted by highly conducting Taylor cones , 1994, Journal of Fluid Mechanics.

[113]  Steve Granick,et al.  Slippery questions about complex fluids flowing past solids , 2003, Nature materials.

[114]  Koichi Hishida,et al.  Measurements of thermally stratified pipe flow using image-processing techniques , 1993 .

[115]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[116]  David Tabor,et al.  The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[117]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[118]  Joseph Katz,et al.  Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates , 2007, Proceedings of the National Academy of Sciences.

[119]  R. G. Cox,et al.  Slow viscous motion of a sphere parallel to a plane wall—I Motion through a quiescent fluid , 1967 .

[120]  D. Prieve,et al.  Hindered diffusion of colloidal particles very near to a wall: Revisited , 2000 .

[121]  David A. Weitz,et al.  Tracking the Dynamics of Single Quantum Dots: Beating the Optical Resolution Twice , 2002 .

[122]  M. L. Sheely,et al.  Glycerol Viscosity Tables , 1932 .

[123]  K. C. Thong,et al.  The production of charged monodisperse fuel droplets by electrical dispersion , 1971 .

[124]  D. Axelrod Total internal reflection fluorescence microscopy in cell biology. , 2003, Methods in enzymology.

[125]  H Schindler,et al.  Imaging of single molecule diffusion. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[126]  Phil Attard,et al.  Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary during shear flow. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[127]  Rice,et al.  Direct measurements of constrained brownian motion of an isolated sphere between two walls , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[128]  E L Berg,et al.  A direct comparison of selectin-mediated transient, adhesive events using high temporal resolution. , 1999, Biophysical journal.

[129]  Jerome H Milgram,et al.  Computational reconstruction of images from holograms. , 2002, Applied optics.

[130]  J. Fritz,et al.  Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[131]  Jizhong Lou,et al.  Mechanisms for Flow-Enhanced Cell Adhesion , 2008, Annals of Biomedical Engineering.

[132]  Patrick Tabeling,et al.  Direct measurement of the apparent slip length. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[133]  M. Cloupeau,et al.  Electrostatic spraying of liquids in cone-jet mode , 1989 .

[134]  Alfonso M. Gañán-Calvo,et al.  Current and droplet size in the electrospraying of liquids. Scaling laws , 1997 .

[135]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[136]  Vahid Sandoghdar,et al.  Spontaneous emission of europium ions embedded in dielectric nanospheres. , 2002, Physical review letters.

[137]  J. Walz,et al.  Simultaneous investigation of sedimentation and diffusion of a single colloidal particle near an interface. , 2006, The Journal of chemical physics.

[138]  L. Léger,et al.  Direct experimental evidence of slip in hexadecane: solid interfaces , 2000, Physical review letters.

[139]  Lydéric Bocquet,et al.  Large Slip Effect at a Nonwetting Fluid-Solid Interface , 1999 .

[140]  R. Sadr,et al.  Multilayer nano-particle image velocimetry , 2005 .

[141]  M. Lipson,et al.  Optofluidic trapping and transport on solid core waveguides within a microfluidic device. , 2007, Optics express.

[142]  Chew Radiation and lifetimes of atoms inside dielectric particles. , 1988, Physical review. A, General physics.

[143]  Kenneth R. Spring,et al.  Video Microscopy: The Fundamentals , 1986 .

[144]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[145]  Daniel A Hammer,et al.  Effect of microvillus deformability on leukocyte adhesion explored using adhesive dynamics simulations. , 2005, Biophysical journal.

[146]  Chang Kyoung Choi,et al.  Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM) , 2004 .

[147]  P. Cheng,et al.  Effects of interface wettability on microscale flow by molecular dynamics simulation , 2004 .

[148]  J. Woods,et al.  Probability and Random Processes with Applications to Signal Processing , 2001 .

[149]  C. Neto,et al.  Evidence of shear-dependent boundary slip in newtonian liquids , 2003, The European physical journal. E, Soft matter.

[150]  de Juan L,et al.  Charge and Size Distributions of Electrospray Drops , 1997, Journal of colloid and interface science.

[151]  N. Wagner,et al.  Grand canonical Brownian dynamics simulation of colloidal adsorption , 1997 .

[152]  Lydéric Bocquet,et al.  Low-friction flows of liquid at nanopatterned interfaces , 2003, Nature materials.

[153]  J. Rosell-Llompart,et al.  Generation of submicron monodisperse aerosols in electrosprays , 1990 .

[154]  Alessandro Neri,et al.  Image Acquisition , 2009, Encyclopedia of GIS.

[155]  Eberhard Bodenschatz,et al.  A quantitative study of three-dimensional Lagrangian particle tracking algorithms , 2006 .

[156]  Peter Huang,et al.  Direct measurement of slip length in electrolyte solutions , 2007 .

[157]  M. Mann,et al.  Electrospray Ionization for Mass Spectrometry of Large Biomolecules , 1990 .

[158]  Eric I Corwin,et al.  Kinetically driven self assembly of highly ordered nanoparticle monolayers , 2006, Nature materials.

[159]  K. Breuer,et al.  Near-surface velocimetry using evanescent wave illumination , 2004 .

[160]  A. Gomez,et al.  Charge-Induced Secondary Atomization in Diffusion Flames of Electrostatic Sprays , 1994 .

[161]  M. Cloupeau,et al.  ELECTROHYDRODYNAMIC SPRAYING FUNCTIONING MODES - A CRITICAL-REVIEW , 1994 .

[162]  Ibrahim Hassan,et al.  Thermal-Fluid MEMS Devices: A Decade of Progress and Challenges Ahead , 2006 .

[163]  D. Sholl,et al.  Brownian dynamics simulation of the motion of a rigid sphere in a viscous fluid very near a wall , 2000 .

[164]  Hiroshi Mizunuma,et al.  Slip of Newtonian Fluids at Solid Boundary , 1997 .

[165]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[166]  Howard A. Stone,et al.  Microfluidics: The no-slip boundary condition , 2005, cond-mat/0501557.