Löwner-Based Blind Signal Separation of Rational Functions With Applications

A new blind signal separation (BSS) technique is proposed, enabling a deterministic separation of signals into rational functions. Rational functions can take on a wide range of forms, such as the well-known pole-like shape. The approach is a possible alternative for the well-known independent component analysis when the theoretical sources are not independent, such as for frequency spectra, or when only a small number of samples is available. The technique uses a low-rank decomposition on the tensorized version of the observed data matrix. The deterministic tensorization with Löwner matrices is comprehensively analyzed in this paper. Uniqueness properties are investigated, and a connection with the separation into exponential polynomials is made. Finally, the technique is illustrated for fetal electrocardiogram extraction and with an application in the domain of fluorescence spectroscopy, enabling the identification of chemical analytes using only a single excitation-emission matrix.

[1]  Yuanqing Li,et al.  Analysis of Sparse Representation and Blind Source Separation , 2004, Neural Computation.

[2]  Joos Vandewalle,et al.  Fetal electrocardiogram extraction by blind source subspace separation , 2000, IEEE Transactions on Biomedical Engineering.

[3]  Sanda Lefteriu,et al.  Chapter 8: A Tutorial Introduction to the Loewner Framework for Model Reduction , 2017 .

[4]  Lócsi Rational function systems with applications in signal processing Theses of the PhD Dissertation , 2014 .

[5]  Dimitrios I. Fotiadis,et al.  An Automated Methodology for Fetal Heart Rate Extraction From the Abdominal Electrocardiogram , 2007, IEEE Transactions on Information Technology in Biomedicine.

[6]  Lieven De Lathauwer,et al.  Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank-(Lr, n, Lr, n, 1) Terms - Part I: Uniqueness , 2015, SIAM J. Matrix Anal. Appl..

[7]  Henk A. L. Kiers,et al.  A three–step algorithm for CANDECOMP/PARAFAC analysis of large data sets with multicollinearity , 1998 .

[8]  D. Sorensen,et al.  Approximation of large-scale dynamical systems: an overview , 2004 .

[9]  Lieven De Lathauwer,et al.  Blind signal separation of rational functions using Löwner-based tensorization , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[10]  Zdenĕk Vavr̆ín,et al.  A unified approach to Loewner and Hankel matrices , 1991 .

[11]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[12]  Daniel Boley,et al.  A fast method to diagonalize a Hankel matrix , 1998 .

[13]  Vince D. Calhoun,et al.  Neuronal chronometry of target detection: Fusion of hemodynamic and event-related potential data , 2005, NeuroImage.

[14]  Lieven De Lathauwer,et al.  Block Component Analysis, a New Concept for Blind Source Separation , 2012, LVA/ICA.

[15]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[16]  Rasmus Bro,et al.  Multi-way Analysis with Applications in the Chemical Sciences , 2004 .

[17]  Lieven De Lathauwer,et al.  Fourth-Order Cumulant-Based Blind Identification of Underdetermined Mixtures , 2007, IEEE Transactions on Signal Processing.

[18]  L. Lathauwer,et al.  Signal Processing based on Multilinear Algebra , 1997 .

[19]  S. Leurgans,et al.  Multilinear Models: Applications in Spectroscopy , 1992 .

[20]  Barak A. Pearlmutter,et al.  Blind Source Separation by Sparse Decomposition in a Signal Dictionary , 2001, Neural Computation.

[21]  D. Vandevoorde A fast exponential decomposition algorithm and its applications to structured matrices , 1998 .

[22]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[23]  Levente Lócsi,et al.  Approximating poles of complex rational functions , 2009 .

[24]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[25]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[26]  Lieven De Lathauwer,et al.  Structured Data Fusion , 2015, IEEE Journal of Selected Topics in Signal Processing.

[27]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part III: Alternating Least Squares Algorithms , 2008, SIAM J. Matrix Anal. Appl..

[28]  Allan Pinkus,et al.  INTERPOLATION BY MATRICES , 2004 .

[29]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[30]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[31]  Yukihiko Yamashita,et al.  Smooth nonnegative matrix and tensor factorizations for robust multi-way data analysis , 2015, Signal Process..

[32]  Lieven De Lathauwer,et al.  Generic Uniqueness of a Structured Matrix Factorization and Applications in Blind Source Separation , 2016, IEEE Journal of Selected Topics in Signal Processing.

[33]  M. Fiedler Hankel and loewner matrices , 1984 .

[34]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[35]  L. Lathauwer,et al.  On the Best Rank-1 and Rank-( , 2004 .

[36]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..

[37]  Ferenc Schipp,et al.  Rational Function Systems in ECG Processing , 2011, EUROCAST.

[38]  Karl Löwner Über monotone Matrixfunktionen , 1934 .

[39]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[40]  Lieven De Lathauwer,et al.  Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank-(Lr, Lr, 1) Terms , 2011, SIAM J. Matrix Anal. Appl..

[41]  Zdeněk Vavřín,et al.  Confluent Cauchy and Cauchy-Vandermonde matrices , 1997 .

[42]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[43]  Nico Vervliet,et al.  Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors: Tensor-based scientific computing in big data analysis , 2014, IEEE Signal Processing Magazine.

[44]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[45]  Athanasios C. Antoulas,et al.  On the Scalar Rational Interpolation Problem , 1986 .

[46]  R. Bro,et al.  Practical aspects of PARAFAC modeling of fluorescence excitation‐emission data , 2003 .

[47]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[48]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[49]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..

[50]  David E. Booth,et al.  Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.

[51]  Laurent Albera,et al.  Fourth-order blind identification of underdetermined mixtures of sources (FOBIUM) , 2005, IEEE Transactions on Signal Processing.

[52]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..