Multichannel complex maximum entropy (autoregressive) spectral analysis

The Burg reflection-coefficient method for maximum entropy (antoregressive) spectral estimation is generalized to apply to multichannel complex signal. It is shown that all resulting power matrices are positive definite. Preliminary numerical results obtained for a monochromatic signal with noise indicate that the determinants of the power matrices are rapidly reduced as the number of filter coefficients is increased, and that superior spectral resolution can be expected.

[1]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[2]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[3]  E. Robinson,et al.  Recursive solution to the multichannel filtering problem , 1965 .

[4]  Ralph. Deutsch,et al.  Estimation Theory , 1966 .

[5]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[6]  H. Akaike Fitting autoregressive models for prediction , 1969 .

[7]  H. Akaike Autoregressive model fitting for control , 1971 .

[8]  T. Ulrych,et al.  Maximum entropy power spectrum of truncated sinusoids , 1972 .

[9]  E. R. Kanasewich,et al.  Time sequence analysis in geophysics , 1973 .

[10]  H. Akaike A new look at the statistical model identification , 1974 .

[11]  E. Parzen Some recent advances in time series modeling , 1974 .

[12]  G. R. Stegen,et al.  Experiments with maximum entropy power spectra of sinusoids , 1974 .

[13]  Richard H. Jones,et al.  Identification and autoregressive spectrum estimation , 1974, CDC 1974.

[14]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[15]  T. Ulrich,et al.  Maximum entropy spectral analy-sis and autoregressive decomposition , 1975 .

[16]  G. Ioannidis Application of multivariate autoregressive spectrum estimation to ULF waves , 1975 .

[17]  S. Haykin,et al.  The complex form of the maximum entropy method for special estimation , 1976, Proceedings of the IEEE.