Three-dimensional FEM analysis of laser shock peening of aluminium alloy 2024-T351 thin sheets

Abstract Laser shock peening is a relatively recent technique that introduces compressive residual stresses in metallic structures, improving fatigue, corrosion and wear resistance of treated materials. The purpose of this work is to evaluate numerically the effect of laser shock peening on thin sheets, since most of the numerical analyses available in the literature deal with semi-infinite body assumption, which disregards the reflection of shock waves from the back side of the treated specimen. This phenomenon should be considered when dealing with sheets used for thin walled constructions, for cases in which there is no possibility of using the back-up support, a solid plate in the contact with the backside of the treated sample that limits the wave reflection and deformations. Different set-ups of laser shock peening process are evaluated and an optimal set of parameters is suggested for a possible real structure application.

[1]  Laurent Berthe,et al.  FEM simulation of residual stresses induced by laser Peening , 2003 .

[2]  C. Braham,et al.  FEM calculation of residual stresses induced by laser shock processing in stainless steels , 2007 .

[3]  Jed Lyons,et al.  Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints , 2007 .

[4]  Y. Shin,et al.  A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments , 2005 .

[5]  L. Ye,et al.  Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening , 2008 .

[6]  Carlos Molpeceres,et al.  Experimental assessment of the influence of irradiation parameters on , 2004 .

[7]  Yongxiang Hu,et al.  Fem simulation of residual stresses induced by laser shock with overlapping laser spots , 2008 .

[8]  Ramana V. Grandhi,et al.  Material model validation for laser shock peening process simulation , 2008 .

[9]  L. Ye,et al.  The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy , 2007 .

[10]  A. Kruusing Handbook of Liquids-Assisted Laser Processing , 2007 .

[11]  Lin Ye,et al.  Simulation of multiple laser shock peening of a 35CD4 steel alloy , 2006 .

[12]  N. C. Anderholm LASER‐GENERATED STRESS WAVES , 1970 .

[13]  R. Fabbro,et al.  Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour , 1996 .

[14]  Yung-Chiun Her,et al.  Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes , 2001 .

[15]  Lloyd A. Hackel,et al.  Surface prestressing to improve fatigue strength of components by laser shot peening , 2000 .

[16]  Michael R. Hill,et al.  The effects of laser peening on high-cycle fatigue in 7085-T7651 aluminum alloy , 2008 .

[17]  T. Wierzbicki,et al.  Evaluation of six fracture models in high velocity perforation , 2006 .

[18]  K. Ding,et al.  Three-dimensional Dynamic Finite Element Analysis of Multiple Laser Shock Peening Processes , 2003 .

[19]  Zhenqiang Yao,et al.  3-D FEM simulation of laser shock processing , 2006 .

[20]  Wenwu Zhang,et al.  Microscale laser shock processing-modeling, testing, and microstructure characterization , 2001 .

[21]  Y. Yao,et al.  Micro scale laser shock processing of metallic components , 2002 .

[22]  Joseph R. Davis Properties and selection : nonferrous alloys and special-purpose materials , 1990 .

[23]  B. P. Fairand,et al.  Effects of Laser Induced Shock Waves on Metals , 1981 .

[24]  Yongkang Zhang,et al.  Ultrahigh-strain-rate plastic deformation of a stainless-steel sheet with TiN coatings driven by laser shock waves , 2003 .

[25]  Shalom Eliezer,et al.  BOOK REVIEW: The Interaction of High-Power Lasers With Plasmas , 2002 .

[26]  Yuebin Guo,et al.  Massive parallel laser shock peening: Simulation, analysis, and validation , 2008 .

[27]  Stuart Edwardson,et al.  Laser peen forming of thin sheet ferrous materials , 2006 .

[28]  D. Lesuer,et al.  EXPERIMENTAL INVESTIGATIONS OF MATERIAL MODELS FOR TI-6A1-4V TITANIUM AND 2024-T3 ALUMINUM. , 2000 .

[29]  J. Ocaña,et al.  Numerical simulation of plasma dynamics in laser shock processing experiments , 2009 .

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  Sinisa Vukelic,et al.  Wave-solid interactions in laser-shock-induced deformation processes , 2005 .

[32]  K. Ding,et al.  FEM Simulation of Two Sided Laser Shock Peening of Thin Sections of Ti-6Al-4V Alloy , 2003 .

[33]  S. Papson,et al.  “Model” , 1981 .

[34]  Allan H. Clauer,et al.  Laser Shock Peening for Fatigue Resistance , 2000, Materials: Book of Abstracts.

[35]  R. Brockman,et al.  Finite element simulation of laser shock peening , 1999 .

[36]  A. Kruusing Chapter Three – Shock Processing , 2008 .

[37]  Yongxiang Hu,et al.  Numerical simulation and experimentation of overlapping laser shock processing with symmetry cell , 2008 .

[38]  Mario Pagliaro,et al.  Fundamentals of Shock Wave Propagation in Solids , 2008 .

[39]  Andrew G. Glen,et al.  APPL , 2001 .

[40]  Jin Cheng,et al.  Process Design of Laser Forming for Three-Dimensional Thin Plates , 2004 .

[41]  Richard M. White,et al.  Elastic Wave Generation by Electron Bombardment or Electromagnetic Wave Absorption , 1963 .

[42]  D Leseur,et al.  Experimental investigations of material models for Ti-6A1-4V and 2024-T3 , 1999 .