Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers

PurposeThe increasing use of amyloid PET in Alzheimer’s disease research and clinical trials has motivated efforts to standardize methodology. We compared retention of the 11C radiotracer Pittsburgh Compound B (PiB) and that of two 18F amyloid radiotracers (florbetapir and flutemetamol) using two study populations. We also examined the feasibility of converting between tracer-specific measures, using PiB as the common link between the two 18F tracers.MethodsOne group of 40 subjects underwent PiB and flutemetamol imaging sessions and a separate group of 32 subjects underwent PiB and florbetapir imaging sessions. We compared cortical and white matter retention for each 18F tracer relative to that of PiB, as well as retention in several reference regions and image analysis methods. Correlations between tracer pairs were used to convert tracer-specific threshold values for amyloid positivity between tracers.ResultsCortical retention for each pair of tracers was strongly correlated regardless of reference region (PiB–flutemetamol, ρ = 0.84–0.99; PiB–florbetapir, ρ = 0.83–0.97) and analysis method (ρ = 0.90–0.99). Compared to PiB, flutemetamol had higher white matter retention, while florbetapir had lower cortical retention. Two previously established independent thresholds for amyloid positivity were highly consistent when values were converted between tracer pairs.ConclusionDespite differing white and grey matter retention characteristics, cortical retention for each 18F tracer was highly correlated with that of PiB, enabling conversion of thresholds across tracer measurement scales with a high level of internal consistency. Standardization of analysis methods and measurement scales may facilitate the comparison of amyloid PET data obtained using different tracers.

[1]  L. Thurfjell,et al.  Phase 1 Study of the Pittsburgh Compound B Derivative 18F-Flutemetamol in Healthy Volunteers and Patients with Probable Alzheimer Disease , 2009, Journal of Nuclear Medicine.

[2]  C. Rowe,et al.  Comparison of 11C-PiB and 18F-florbetaben for Aβ imaging in ageing and Alzheimer’s disease , 2012, European Journal of Nuclear Medicine and Molecular Imaging.

[3]  Christer Halldin,et al.  Clinical Validation of 18F-AZD4694, an Amyloid-β–Specific PET Radioligand , 2012, The Journal of Nuclear Medicine.

[4]  E. Salmon,et al.  18F‐flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: A phase 2 trial , 2010, Annals of neurology.

[5]  W. Klunk,et al.  Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound‐B , 2004, Annals of neurology.

[6]  C. Rowe,et al.  Imaging β-amyloid burden in aging and dementia , 2007, Neurology.

[7]  R. Boellaard,et al.  Test-retest variability of quantitative [11C]PIB studies in Alzheimer’s disease , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[8]  Cindee M. Madison,et al.  Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. , 2009, Brain : a journal of neurology.

[9]  G. Linazasoro,et al.  IMAGING β-AMYLOID BURDEN IN AGING AND DEMENTIA , 2008, Neurology.

[10]  M. Mintun,et al.  Amyloid-β Imaging with Pittsburgh Compound B and Florbetapir: Comparing Radiotracers and Quantification Methods , 2013, The Journal of Nuclear Medicine.

[11]  M. Modat,et al.  The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[12]  M. Pontecorvo,et al.  Amyloid imaging in Alzheimer's disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[13]  R. Coleman,et al.  Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study , 2012, The Lancet Neurology.

[14]  M. Mintun,et al.  Amyloid deposition, hypometabolism, and longitudinal cognitive decline , 2012, Annals of neurology.

[15]  W. Jagust,et al.  Association of lifetime cognitive engagement and low β-amyloid deposition. , 2012, Archives of neurology.

[16]  C. Rowe,et al.  Imaging of amyloid β in Alzheimer's disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism , 2008, The Lancet Neurology.

[17]  C. Rowe,et al.  Characterization of PiB Binding to White Matter in Alzheimer Disease and Other Dementias , 2009, Journal of Nuclear Medicine.

[18]  M. Mintun,et al.  Performance Characteristics of Amyloid PET with Florbetapir F 18 in Patients with Alzheimer's Disease and Cognitively Normal Subjects , 2012, The Journal of Nuclear Medicine.

[19]  H. Engler,et al.  PET imaging of amyloid deposition in patients with mild cognitive impairment , 2008, Neurobiology of Aging.

[20]  James Robert Brašić,et al.  In Vivo Imaging of Amyloid Deposition in Alzheimer Disease Using the Radioligand 18F-AV-45 (Flobetapir F 18) , 2010, Journal of Nuclear Medicine.

[21]  Jyrki Lötjönen,et al.  Implementation and Validation of an Adaptive Template Registration Method for 18F-Flutemetamol Imaging Data , 2013, The Journal of Nuclear Medicine.

[22]  M. Weiner,et al.  Relationships between biomarkers in aging and dementia , 2009, Neurology.