On Cutwidth Parameterized by Vertex Cover

We study the Cutwidth problem, where input is a graph G, and the objective is find a linear layout of the vertices that minimizes the maximum number of edges intersected by any vertical line inserted between two consecutive vertices. We give an algorithm for Cutwidth with running time O(2knO(1)). Here k is the size of a minimum vertex cover of the input graph G, and n is the number of vertices in G. Our algorithm gives an O(2n/2nO(1)) time algorithm for Cutwidth on bipartite graphs as a corollary. This is the first non-trivial exact exponential time algorithm for Cutwidth on a graph class where the problem remains NP-complete. Additionally, we show that Cutwidth parameterized by the size of the minimum vertex cover of the input graph does not admit a polynomial kernel unless NP ⊆ coNP/poly. Our kernelization lower bound contrasts the recent result of Bodlaender et al.[ICALP 2011] that Treewidth parameterized by vertex cover does admit a polynomial kernel.

[1]  H. Bodlaender,et al.  Analysis of Data Reduction: Transformations give evidence for non-existence of polynomial kernels , 2008 .

[2]  Petra Mutzel,et al.  A Polyhedral Approach to Planar Augmentation and Related Problems , 1995, ESA.

[3]  D. Adolphson Optimal linear-ordering. , 1973 .

[4]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[5]  Maria J. Serna,et al.  Cutwidth II: Algorithms for partial w-trees of bounded degree , 2005, J. Algorithms.

[6]  Stefan Kratsch,et al.  Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.

[7]  Pinar Heggernes,et al.  Cutwidth of Split Graphs and Threshold Graphs , 2011, SIAM J. Discret. Math..

[8]  Stefan Kratsch,et al.  Kernel Bounds for Structural Parameterizations of Pathwidth , 2012, SWAT.

[9]  Jin-Yi Cai,et al.  Competing provers yield improved Karp-Lipton collapse results , 2005, Inf. Comput..

[10]  Richard Bellman,et al.  Dynamic Programming Treatment of the Travelling Salesman Problem , 1962, JACM.

[11]  Richard M. Karp,et al.  Dynamic programming meets the principle of inclusion and exclusion , 1982, Oper. Res. Lett..

[12]  Stefan Kratsch,et al.  Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization , 2011, SIAM J. Discret. Math..

[13]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[14]  Yngve Villanger,et al.  Computing Pathwidth Faster Than 2n , 2009, IWPEC.

[15]  Fillia Makedon,et al.  Polynomial time algorithms for the MIN CUT problem on degree restricted trees , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[16]  Rodrigo A. Botafogo Cluster analysis for hypertext systems , 1993, SIGIR.

[17]  Andrew Drucker,et al.  New Limits to Classical and Quantum Instance Compression , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[18]  Chee-Keng Yap,et al.  Some Consequences of Non-Uniform Conditions on Uniform Classes , 1983, Theor. Comput. Sci..

[19]  G. Rinaldi,et al.  Chapter 4 The traveling salesman problem , 1995 .

[20]  Yuan Jinjiang,et al.  Optimal labelling of unit interval graphs , 1995 .

[21]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[22]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2011, J. Comput. Syst. Sci..

[23]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[24]  David R. Karger A Randomized Fully Polynomial Time Approximation Scheme for the All-Terminal Network Reliability Problem , 1999, SIAM J. Comput..

[25]  Michael R. Fellows,et al.  Graph Layout Problems Parameterized by Vertex Cover , 2008, ISAAC.

[26]  Pinar Heggernes,et al.  Cutwidth of Split Graphs, Threshold Graphs, and Proper Interval Graphs , 2008, WG.

[27]  Mihalis Yannakakis,et al.  A polynomial algorithm for the MIN CUT linear arrangement of trees , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[28]  Pim van 't Hof,et al.  Computing the Cutwidth of Bipartite Permutation Graphs in Linear Time , 2010, SIAM J. Discret. Math..

[29]  Fanica Gavril,et al.  Some NP-complete problems on graphs , 2011, CISS 2011.

[30]  Fedor V. Fomin,et al.  Exact algorithms for treewidth and minimum fill-in ∗ † , 2006 .

[31]  Fillia Makedon,et al.  On minimizing width in linear layouts , 1989, Discret. Appl. Math..

[32]  Ivan Hal Sudborough,et al.  Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.

[33]  Maria J. Serna,et al.  Approximating Layout Problems on Random Geometric Graphs , 2001, J. Algorithms.

[34]  Stefan Kratsch,et al.  Data reduction for graph coloring problems , 2011, Inf. Comput..

[35]  Andreas Björklund,et al.  Determinant Sums for Undirected Hamiltonicity , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[36]  Stefan Näher,et al.  The Travelling Salesman Problem , 2011, Algorithms Unplugged.

[37]  Guillaume Fertin,et al.  Fixed-parameter algorithms for protein similarity search under mRNA structure constraints , 2005, J. Discrete Algorithms.