Controlled Motion of a Spherical Robot with Feedback. I

In this paper, we develop a model of a controlled spherical robot with an axisymmetric pendulum-type actuator with a feedback system suppressing the pendulum’s oscillations at the final stage of motion. According to the proposed approach, the feedback depends on phase variables (the current position and velocities) and does not depend on the type of trajectory. We present integrals of motion and partial solutions, analyze their stability, and give examples of computer simulation of motion using feedback to illustrate compensation of the pendulum’s oscillations.

[2]  Motoji Yamamoto,et al.  A Motion Planning Strategy for a Spherical Rolling Robot Driven by Two Internal Rotors , 2014, IEEE Transactions on Robotics.

[3]  A. A. Kilin,et al.  Nonholonomic dynamics and control of a spherical robot with an internal omniwheel platform: Theory and experiments , 2016 .

[4]  Tomi Ylikorpi,et al.  Dynamic modeling and obstacle-crossing capability of flexible pendulum-driven ball-shaped robots , 2017, Robotics Auton. Syst..

[5]  Alexey V. Borisov,et al.  How to control the Chaplygin ball using rotors. II , 2013 .

[6]  Shinichi Hirai,et al.  Circular/Spherical Robots for Crawling and Jumping , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[7]  Tatiana B. Ivanova,et al.  Comments on the paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev “How to control the Chaplygin ball using rotors. II” , 2014 .

[8]  Motoji Yamamoto,et al.  On the dynamic model and motion planning for a spherical rolling robot actuated by orthogonal internal rotors , 2013 .

[9]  Jerrold E. Marsden,et al.  Stabilization of rigid body dynamics by internal and external torques , 1992, Autom..

[10]  A. Borisov,et al.  The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside , 2014 .

[11]  Vijay Kumar,et al.  Optimal Gait Selection for Nonholonomic Locomotion Systems , 2000, Int. J. Robotics Res..

[12]  Yang Bai,et al.  Dynamic model and motion planning for a pendulum-actuated spherical rolling robot , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[13]  A. Kilin,et al.  Experimental research of dynamic of spherical robot of combined type , 2015 .

[14]  A. Ivanov On the control of a robot ball using two omniwheels , 2015 .

[15]  S. Chaplygin On some generalization of the area theorem with applications to the problem of rolling balls , 2012 .

[16]  Alexander A. Kilin,et al.  The dynamics and control of a spherical robot with an internal omniwheel platform , 2015 .

[17]  Yanheng Zhang,et al.  Stabilization and Control of a Spherical Robot on an Inclined Plane , 2013 .

[18]  Grigory V. Osipov,et al.  A motion control for a spherical robot with pendulum drive , 2013 .

[19]  Douglas R. Isenberg,et al.  Omnidirectional locomotion control of a pendulum driven spherical robot , 2016, SoutheastCon 2016.

[20]  A. Kilin,et al.  Spherical robot of combined type: Dynamics and control , 2015 .

[21]  Vladimir Pavlovsky,et al.  Controlling spherical mobile robot in a two-parametric friction model , 2017 .

[22]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers. Definitions, theorems, and formulas for reference and review , 1968 .

[23]  Jamey D. Jacob,et al.  Velocity control of a cylindrical rolling robot by shape changing , 2016, Adv. Robotics.

[24]  Mehdi Roozegar,et al.  Adaptive estimation of nonlinear parameters of a nonholonomic spherical robot using a modified fuzzy-based speed gradient algorithm , 2017 .

[25]  Mehdi Roozegar,et al.  Modelling and control of a non-holonomic pendulum-driven spherical robot moving on an inclined plane: simulation and experimental results , 2017 .

[26]  Erdal Kayacan,et al.  Adaptive Neuro-Fuzzy Control of a Spherical Rolling Robot Using Sliding-Mode-Control-Theory-Based Online Learning Algorithm , 2013, IEEE Transactions on Cybernetics.

[27]  Alexey V. Borisov,et al.  How to control Chaplygin’s sphere using rotors , 2012 .

[28]  Tomi Ylikorpi,et al.  Dynamic Obstacle Overcoming Capability of Pendulum-Driven Ball-Shaped Robots , 2014, RA 2014.

[29]  Wouter Saeys,et al.  Modeling and control of a spherical rolling robot: a decoupled dynamics approach , 2011, Robotica.

[30]  Joel W. Burdick,et al.  Nonholonomic mechanics and locomotion: the snakeboard example , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[31]  R. Yarmukhamedov,et al.  Comments to the paper , 2010 .

[32]  E. Pivovarova,et al.  Dynamics and Control of a Spherical Robot with an Axisymmetric Pendulum Actuator , 2015, 1511.02655.

[33]  Naomi Ehrich Leonard,et al.  Stabilization of mechanical systems using controlled Lagrangians , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[34]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[35]  E. Pivovarova,et al.  Stability Analysis of Periodic Solutions in the Problem of the Rolling of a Ball with a Pendulum , 2012 .

[36]  H. Kitchen,et al.  Comments on the Paper by , 1999 .

[37]  Abhilash Pandya,et al.  A Review of Active Mechanical Driving Principles of Spherical Robots , 2012, Robotics.

[38]  Yan Wang,et al.  Motion control of a spherical mobile robot , 1996, Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE.

[39]  Kristin L. Wood,et al.  Implementing caterpillar inspired roll control of a spherical robot , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[40]  Jordan M. Berg,et al.  Feedback regularization and geometric PID control for trajectory tracking of mechanical systems: Hoop robots on an inclined plane , 2016, 2017 American Control Conference (ACC).

[41]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.