Charge qubits in semiconductor quantum computer architecture : Tunnel coupling and decoherence
暂无分享,去创建一个
[1] M Y Simmons,et al. Atomically precise placement of single dopants in si. , 2003, Physical review letters.
[2] G. Guo,et al. Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment , 1996, quant-ph/9612003.
[3] S. Das Sarma,et al. Overview of spin‐based quantum dot quantum computation , 2002, cond-mat/0211358.
[4] Xuedong Hu,et al. Silicon-based spin and charge quantum computation , 2005 .
[5] Electron exchange coupling for single-donor solid-state spin qubits , 2003, cond-mat/0309417.
[6] Joel N. Schulman,et al. Wave Mechanics Applied to Semiconductor Heterostructures , 1991 .
[7] A. G. Fowler,et al. Single-spin readout for buried dopant semiconductor qubits , 2004, quant-ph/0402077.
[8] Xuedong Hu,et al. Spin quantum computation in silicon nanostructures , 2005 .
[9] Y. Makhlin,et al. Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.
[10] Eli Yablonovitch,et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.
[11] L. Vandersypen,et al. Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.
[12] C. R. Stanley,et al. Coherent manipulation of semiconductor quantum bits with terahertz radiation , 2001, Nature.
[13] Xuedong Hu,et al. Strain effects on silicon donor exchange: Quantum computer architecture considerations , 2002 .
[14] Barenco,et al. Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.
[15] K. Andres,et al. Low-temperature magnetic susceptibility of Si: P in the nonmetallic region , 1981 .
[16] Leonid Fedichkin,et al. A silicon-based nuclear magnetic resonance (NMR) quantum computer using resonant transfer of a single electron for the inter-qubit interaction , 2001 .
[17] B. E. Kane,et al. Hydrogenic spin quantum computing in silicon: a digital approach. , 2002, Physical review letters.
[18] B. E. Kane. Silicon‐Based Quantum Computation , 2000, quant-ph/0003031.
[19] D. DiVincenzo,et al. Quantum computation with quantum dots , 1997, cond-mat/9701055.
[20] B. Chui,et al. Single spin detection by magnetic resonance force microscopy , 2004, Nature.
[21] G. J. Milburn,et al. Charge-based quantum computing using single donors in semiconductors , 2004 .
[22] L. Fedichkin,et al. Error rate of a charge qubit coupled to an acoustic phonon reservoir (4 pages) , 2004 .
[23] R. Jozsa,et al. Quantum Computation and Shor's Factoring Algorithm , 1996 .
[24] G. J. Milburn,et al. Measuring the decoherence rate in a semiconductor charge qubit , 2003 .
[25] D. D. Awschalom,et al. Quantum information processing using quantum dot spins and cavity QED , 1999 .
[26] B. E. Kane. Can We Build a Large-Scale Quantum Computer Using Semiconductor Materials? , 2005 .
[27] Matthieu Verstraete,et al. First-principles computation of material properties: the ABINIT software project , 2002 .
[28] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[29] A. Gossard,et al. Manipulation of a single charge in a double quantum dot. , 2004, Physical review letters.
[30] Y. Tokura,et al. Dephasing due to background charge fluctuations , 2003, cond-mat/0303412.
[31] H. Cheong,et al. Coherent manipulation of electronic States in a double quantum dot. , 2003, Physical review letters.
[32] A. Baldereschi. Valley-Orbit Interaction in Semiconductors , 1970 .
[33] G. Mahan. Many-particle physics , 1981 .
[34] Xuedong Hu,et al. Hilbert-space structure of a solid-state quantum computer: Two-electron states of a double-quantum-dot artificial molecule , 2000 .
[35] Xuedong Hu,et al. Exchange in silicon-based quantum computer architecture. , 2002, Physical review letters.
[36] T Yamamoto,et al. Charge echo in a cooper-pair box. , 2002, Physical review letters.
[37] Y. Pashkin,et al. Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.
[38] K. A. Valiev,et al. Coherent charge qubits based on GaAs quantum dots with a built-in barrier , 2000 .
[39] B. E. Kane. A silicon-based nuclear spin quantum computer , 1998, Nature.