Probabilistic unfolding models for sensory data
暂无分享,去创建一个
[1] D. B. MacKay. Probabilistic Multidimensional Scaling Using a City-Block Metric. , 2001, Journal of mathematical psychology.
[2] David B. MacKay,et al. Probabilistic Multidimensional Analysis of Preference Ratio Judgments , 1989 .
[3] Joseph L. Zinnes,et al. Probabilistic multidimensional scaling: Complete and incomplete data , 1983 .
[4] L. Thurstone. A law of comparative judgment. , 1994 .
[5] David B. MacKay,et al. Probabilistic multidimensional scaling: An anisotropic model for distance judgments , 1989 .
[6] Robert F. Easley,et al. A Single Ideal Point Model for Market Structure Analysis , 1995 .
[7] Per B. Brockhoff,et al. Heterogeneity in consumer preference data : A combined approach , 1997 .
[8] C. Coombs. A theory of data. , 1965, Psychology Review.
[9] David B. MacKay,et al. Probabilistic multidimensional unfolding: an anisotropic model for preference ratio judgments , 1995 .
[10] Jaewun Cho,et al. A stochastic multidimensional scaling vector threshold model for the spatial representation of “pick any/n” data , 1989 .
[11] Roger N. Shepard,et al. Multidimensional scaling : theory and applications in the behavioral sciences , 1974 .
[12] Geert De Soete,et al. The Wandering Ideal Point Model: A Probabilistic Multidimensional Unfolding Model for Paired Comparisons Data , 1986 .
[13] R. Goldstone. An efficient method for obtaining similarity data , 1994 .
[14] G. De Soete,et al. Clustering and Classification , 2019, Data-Driven Science and Engineering.