Aromaticity changes along the reaction coordinate connecting the cyclobutadiene dimer to cubane and the benzene dimer to hexaprismane

Aromaticity and reactivity are two deeply connected concepts. Most of the thermally allowed cycloadditions take place through aromatic transition states, while transition states of thermally forbidden reactions are usually less aromatic, if at all. In this work, we perform a numerical experiment to discuss the change of aromaticity that occurs along the reaction paths that connect two antiaromatic units of cyclobutadiene to form cubane and two aromatic rings of benzene to yield hexaprismane. It is found that the aromaticity profile along the reaction coordinate of the [4+4] cycloaddition of two antiaromatic cyclobutadiene molecules goes through an aromatic highest energy point and finishes to an antiaromatic cubane species. Up to our knowledge, this represents the first example of a theoretically and thermally forbidden reaction path that goes through an intermediate aromatic region. In contrast, the aromaticity profile in the [6+6] cycloaddition of two aromatic benzene rings show a slow steady decrease of aromaticity from reactants to the highest energy point and from this to the final hexaprismane molecule a plunge of aromaticity is observed. In both systems, the main change of aromaticity occurs abruptly near the highest energy point, when the distance between the centers of the two rings is about 2.2 Å.Graphical contents entry

[1]  H. Kakeya,et al.  Computational study on the reaction mechanism of the key thermal [4 + 4] cycloaddition reaction in the biosynthesis of epoxytwinol A. , 2006, Organic letters.

[2]  Fernando Bernardi,et al.  An MC-SCF study of the thermal cycloaddition of two ethylenes , 1985 .

[3]  K. Houk,et al.  The Dimerization of Cyclobutadiene. An ab Initio CASSCF Theoretical Study , 1996 .

[4]  M. Solà,et al.  Erratum: “The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization” [J. Chem Phys. 122, 014109 (2005)] , 2006 .

[5]  Pedro Salvador,et al.  Electron sharing indexes at the correlated level. Application to aromaticity calculations. , 2007, Faraday discussions.

[6]  G. Portella,et al.  Local aromaticity of [n]acenes, [n]phenacenes, and [n]helicenes (n = 1-9). , 2005, The Journal of organic chemistry.

[7]  Ernest R. Davidson,et al.  The Importance of Including Dynamic Electron Correlation in ab initio Calculations , 1996 .

[8]  P. Schleyer,et al.  Which NICS aromaticity index for planar pi rings is best? , 2006, Organic letters.

[9]  Andrew C. Simmonett,et al.  Popular theoretical methods predict benzene and arenes to be nonplanar. , 2006, Journal of the American Chemical Society.

[10]  A. Katritzky,et al.  To what extent can aromaticity be defined uniquely? , 2002, The Journal of organic chemistry.

[11]  Sason Shaik,et al.  A different story of pi-delocalization--the distortivity of pi-electrons and its chemical manifestations. , 2001, Chemical reviews.

[12]  S. Shaik,et al.  Intramolecular effects in the cycloaddition of three ethylenes vs. the Diels–Alder reaction , 1992 .

[13]  T. M. Krygowski,et al.  Structural aspects of aromaticity. , 2001, Chemical reviews.

[14]  E. Halevi Orbital symmetry and reaction mechanism , 1992 .

[15]  Wei Xu,et al.  The parallel π–π stacking: a model study with MP2 and DFT methods , 2004 .

[16]  G. Seifert,et al.  Induced magnetic fields in aromatic [n]-annulenes—interpretation of NICS tensor components , 2004 .

[17]  Hans Peter Lüthi,et al.  Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model , 2001 .

[18]  Tanja van Mourik,et al.  A critical note on density functional theory studies on rare-gas dimers , 2002 .

[19]  E. Fleischer X-Ray Structure Determination of Cubane , 1964 .

[20]  G. Seifert,et al.  The induced magnetic field in cyclic molecules. , 2004, Chemistry.

[21]  R. Bartlett,et al.  Ab initio calculations on the energy of activation and tunneling in the automerization of cyclobutadiene , 1988 .

[22]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[23]  X. Fradera,et al.  An insight into the local aromaticities of polycyclic aromatic hydrocarbons and fullerenes. , 2003, Chemistry.

[24]  A. Almenningen,et al.  Cubane. molecular structure determined by gas-phase electron diffraction , 1985 .

[25]  Dongwook Kim,et al.  Understanding of assembly phenomena by aromatic-aromatic interactions: benzene dimer and the substituted systems. , 2007, The journal of physical chemistry. A.

[26]  J. Gauss,et al.  A coupled cluster study of the 1 1A1g and 1 1B2u states of benzene , 1998 .

[27]  P. Schleyer,et al.  Sigma-antiaromaticity in cyclobutane, cubane, and other molecules with saturated four-membered rings. , 2003, Organic letters.

[28]  Thomas Heine,et al.  Description of electron delocalization via the analysis of molecular fields. , 2005, Chemical reviews.

[29]  Thomas Heine,et al.  σ and π contributions to the induced magnetic field: Indicators for the mobility of electrons in molecules , 2007, J. Comput. Chem..

[30]  E. Hückel,et al.  Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III , 1932 .

[31]  Friedrich Biegler-König,et al.  Calculation of the average properties of atoms in molecules. II , 1982 .

[32]  T. Chou,et al.  Preparation of (Phenyloxazolo)-3-sulfolene. A Precursor for (Phenyloxazolo)-o-quinodimethane , 1994 .

[33]  P. Schleyer,et al.  Dissected Nucleus-Independent Chemical Shift Analysis of π-Aromaticity and Antiaromaticity. , 2001, Organic letters.

[34]  T. M. Krygowski,et al.  Definition of aromaticity basing on the harmonic oscillator model , 1972 .

[35]  Xavier Fradera,et al.  The Lewis Model and Beyond , 1999 .

[36]  M. Cafiero,et al.  Evaluation of DFT methods for computing the interaction energies of homomolecular and heteromolecular dimers of monosubstituted benzene , 2006 .

[37]  Richard L. Jaffe,et al.  A quantum chemistry study of benzene dimer , 1996 .

[38]  Michael J. Frisch,et al.  MP2 energy evaluation by direct methods , 1988 .

[39]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[40]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[41]  Jae Shin Lee,et al.  Accurate ab initio binding energies of the benzene dimer. , 2006, The journal of physical chemistry. A.

[42]  Edward F. Valeev,et al.  Estimates of the Ab Initio Limit for π−π Interactions: The Benzene Dimer , 2002 .

[43]  Tadeusz Marek Krygowski,et al.  Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of .pi.-electron systems , 1993, J. Chem. Inf. Comput. Sci..

[44]  C. David Sherrill,et al.  Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-Displaced Configurations , 2004 .

[45]  Xavier Fradera,et al.  The delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons. , 2003, Chemistry.

[46]  W. Dailey The structures and energies of pentaprismane and hexaprismane: an ab initio study , 1987 .

[47]  K. Jug,et al.  Influence of .sigma. and .pi. electrons on aromaticity , 1990 .

[48]  Kenneth B. Wiberg,et al.  Group equivalents for converting ab initio energies to enthalpies of formation , 1984 .

[49]  E. W. Della,et al.  Development of millimeter- and submillimeterwave spectroscopy and its application to isotopically-substituted nonpolar molecules, deuterated cubane and deuterated cyclobutanes , 1988 .

[50]  T. W. Cole,et al.  Vibrational spectra of cubane , 1981 .

[51]  Jirí Cerný,et al.  The X3LYP extended density functional accurately describes H-bonding but fails completely for stacking. , 2005, Physical chemistry chemical physics : PCCP.

[52]  W. Dailey,et al.  Synthesis and structure of bishomohexaprismanedione , 1996 .

[53]  Binding energies in benzene dimers: Nonlocal density functional calculations. , 2005, The Journal of chemical physics.

[54]  J. R. Ruble,et al.  The crystal structure of deuterated benzene , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[55]  Kuan-Jiuh Lin,et al.  Synthetic Approach Towards Hexaprismane. A Novel Entry to Homosecohexaprismane Skeleton by Cage Enlargement , 1997 .

[56]  Anna I Krylov,et al.  Equation-of-motion spin-flip coupled-cluster model with single and double substitutions: Theory and application to cyclobutadiene. , 2004, The Journal of chemical physics.

[57]  F. Bernardi,et al.  Theoretical Study of the Aromatic Character of the Transition States of Allowed and Forbidden Cycloadditions , 1995 .

[58]  Erich Steiner,et al.  Counter-Rotating Ring Currents in Coronene and Corannulene. , 2001, Angewandte Chemie.

[59]  G. Mehta,et al.  Synthetic studies towards prismanes: Seco-[6]-prismane , 1991 .

[60]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[61]  C. Bugg,et al.  An x-ray diffraction study of nonplanar carbanion structures. , 1964 .

[62]  Hans Lischka,et al.  Automerization reaction of cyclobutadiene and its barrier height: an ab initio benchmark multireference average-quadratic coupled cluster study. , 2006, Journal of Chemical Physics.

[63]  C. David Sherrill,et al.  High-Accuracy Quantum Mechanical Studies of π−π Interactions in Benzene Dimers , 2006 .

[64]  Ryan P. Lively,et al.  The Effect of Multiple Substituents on Sandwich and T‐Shaped π–π Interactions , 2006 .

[65]  Paolo Lazzeretti Assessment of aromaticity via molecular response properties , 2004 .

[66]  A. Arrieta,et al.  On the mechanism of conversion of N-acyl-4-acyloxy-beta-lactams into 2-substituted 1,3-oxazin-6-ones. Can a low-barrier transition state be antiaromatic? , 2001, The Journal of organic chemistry.

[67]  E. Hückel,et al.  Quanstentheoretische Beiträge zum Benzolproblem , 1931 .

[68]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[69]  Erich Hckel,et al.  Quanstentheoretische Beitrge zum Benzolproblem: II. Quantentheorie der induzierten Polaritten , 1931 .

[70]  Miquel Solà,et al.  Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. , 2005, Chemical reviews.

[71]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[72]  Alan R. Katritzky,et al.  AROMATICITY AS A QUANTITATIVE CONCEPT. 7. AROMATICITY REAFFIRMED AS A MULTIDIMENSIONAL CHARACTERISTIC , 1998 .

[73]  M. Solà,et al.  Local aromaticity of the six-membered rings in pyracylene. A difficult case for the NICS indicator of aromaticity. , 2004, The Journal of organic chemistry.

[74]  P. Schleyer,et al.  Aromaticity of pericyclic reaction transition structures: magnetic evidence , 1998 .

[75]  A. Katritzky,et al.  Quantitative measures of aromaticity for mono-, bi-, and tricyclic penta- and hexaatomic heteroaromatic ring systems and their interrelationships. , 2001, Chemical reviews.

[76]  P. Fuentealba,et al.  An Aromaticity Scale Based on the Topological Analysis of the Electron Localization Function Including σ and π Contributions. , 2005, Journal of chemical theory and computation.

[77]  T. Dinadayalane,et al.  Diels-Alder Reactivity of Butadiene and Cyclic Five-Membered Dienes ((CH)4X, X ) CH2, SiH2, O, NH, PH, and S) with Ethylene: A Benchmark Study , 2002 .

[78]  Masuhiro Mikami,et al.  Effects of the higher electron correlation correction on the calculated intermolecular interaction energies of benzene and naphthalene dimers: comparison between MP2 and CCSD(T) calculations , 2000 .

[79]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[80]  Y. Apeloig,et al.  Evidence for the Dominant Role of Secondary Orbital Interactions in Determining the Stereochemistry of the Diels-Alder Reaction: The Case of Cyclopropene , 1995 .

[81]  T. J. Katz,et al.  Synthesis of prismane , 1973 .

[82]  S. Tsuzuki,et al.  Origin of attraction and directionality of the pi/pi interaction: model chemistry calculations of benzene dimer interaction. , 2002, Journal of the American Chemical Society.

[83]  C. David Sherrill,et al.  Beyond the benzene dimer : An investigation of the additivity of π-π interactions , 2005 .

[84]  Xavier Fradera,et al.  The calculation of electron localization and delocalization indices at the Hartree–Fock, density functional and post-Hartree–Fock levels of theory , 2002 .